Syllabus & Course Structure

for

B. Tech (Food Technology)

As per ICAR 5th Deans' Committee Recommendations

COLLEGE OF FOOD PROCESSING TECHNOLOGY & BIO ENERGY ANAND AGRICULTURAL UNIVERSITY ANAND – 388 110

May, 2017

AAU protective give active give	College of Food Processing Technology & Bio Energy Anand Agricultural University Anand – 388110, Gujarat
Dr. Samit Dutta Principal & Dean	Phone: +91-2692-261302 e-mail: deanfpt@aau.in Website: <u>www.aau.in</u>

No. AAU / FPT-BE / UGAcad / 406 /2024

Date: 29 / 05 / 2024

Endorsement for the Programme Specific Outcomes, Programme Outcomes, and Course Outcomes Mapping of B. Tech. – Food Technology curriculum

ICAR Fifth Deans' Committee has undertaken the task of formulating and advocating uniform courses, along with meticulously curated syllabi, across all esteemed colleges of Food Technology within our nation. The courses and syllabi have been structured with integral importance placed on precision and alignment with academic standards. They serve as a beacon of academic integrity and rigor, aimed at fostering a harmonized educational landscape within the realm of Food Technology. The recommendations set forth by the ICAR Fifth Deans' Committee have been duly endorsed and ratified, reflecting the discerning evaluation and unwavering commitment to educational excellence. This initiative has been executed with careful consideration of meticulous deliberations and diligent efforts by deans from various agricultural universities.

B. Tech. - Food Technology curriculum is herewith delineates and articulates for the Programme Specific Outcomes, Programme Outcomes, and Course Outcomes, meticulously and mapped to ensure a comprehensive and coherent educational framework. The undersigned hereby affix our official seal and endorsement, thereby granting unequivocal approval.

PRINCIPAL & DEAN

Course Structure (Discipline-wise) for

B.Tech. (Food Technology)

		Discipline of Food Processing Technology				
1	FPT 121	Fundamentals of Food Processing	3 (2+1)			
2	FPT 231	Processing Technology of Liquid Milk	2 (1+1)			
3	FPT 232	Processing Technology of Cereals	3 (2+1)			
4	FPT 241	Unit Operations in Food Processing	3 (2+1)			
5	FPT 242	Processing Technology of Dairy Products	3 (2+1)			
6	FPT 243	Processing Technology of Legumes and Oilseeds	3 (2+1)			
7	FPT 244	Processing of Spices and Plantation Crops	3 (2+1)			
8	FPT 351	Design & Formulation of Foods	3 (2+1)			
9	FPT 352	Processing Technology of Fruits and Vegetables	3 (2+1)			
10	FPT 353	Bakery, Confectionery and Snack Products	3 (2+1)			
11	FPT 361	Processing of Meat, Fish & Poultry Products	3 (2+1)			
12	FPT 362	Processing Technology of Beverages	3 (2+1)			
13	FPT 363	Sensory Evaluation of Food Products	3 (2+1)			
14	FPT 364	Food Packaging Technology and Equipment	3 (2+1)			
		Total	41 (27+14)			
		Discipline of Food Safety and Quality Assurance				
1	FQA 111	General Microbiology	3 (2+1)			
2	FQA 112	Food Chemistry of Macronutrients	3 (2+1)			
3	FQA 121	Food Microbiology	3 (2+1)			
4	FQA 122	Food Chemistry of Micronutrients	3 (2+1)			
5	FQA 231	Food Biochemistry and Nutrition	3 (2+1)			
6	FQA 232	Industrial Microbiology	3 (2+1)			
7	FQA 241	Food Biotechnology	3 (2+1)			
8	FQA 242	Food Plant Sanitation	2 (1+1)			
9	FQA 351	Instrumental Techniques in Food Analysis	3 (1+2)			
10	FQA 361	Food Additives and Preservatives	2 (1+1)			
11	FQA 362	Food Quality, Safety Standards and Certification	2 (2+0)			
	Total 30 (19+11)					
1	EDE 101	Discipline of Food Process Engineering	2 (2 1)			
1	FPE 121	Food Thermodynamics	3 (2+1)			
2	FPE 122	Fluid Mechanics	3 (2+1)			
3	FPE 123	Post-Harvest Engineering	3 (2+1)			
4	FPE 231	Heat and Mass Transfer in Food Processing	3 (2+1)			
5	FPE 232	Food Refrigeration and Cold Chain	3 (2+1)			
6	FPE 233	Fundamentals of Food Engineering	3 (2+1)			
7	FPE 241	Food Plant Utilities and Services	3 (2+1)			
8	FPE 351	Food Storage Engineering	3 (2+1)			
9	FPE 352	Food Process Equipment Design	3 (2+1)			
10	FPE 361	Instrumentation and Process Control in Food Industry	3 (2+1)			
11	FPE 362	Applications of Renewable Energy in Food Processing	2 (1+1)			
		Total Discipling of Food Pusings Management	32 (21+11)			
1	EDM 241	Discipline of Food Business Management	2(2+0)			
1	FBM 241	Business Management and Economics	2 (2+0)			

2	FBM 351	ICT Applications in Food Industry	3 (1+2)		
3	FBM 352	Marketing Management and International Trade	2 (2+0)		
4	FBM 361	Entrepreneurship Development	2 (1+1)		
5	FBM 471	Communication and Soft Skills Development	2 (1+1)		
6	FBM 472	Project Preparation and Management	2 (1+1)		
		Total	13 (8+5)		
	I	Discipline of Basic Engineering			
1	FPE 111	Basic Electrical Engineering	3 (2+1)		
2	FPE 112	Workshop Technology	3 (1+2)		
3	FPE 113	Engineering Drawing and Graphics	3 (1+2)		
4	FBM 111	Computer Programming and Data Structures	2 (1+1)		
5	FPE 124	Basic Electronics Engineering	3 (2+1)		
	Total				
	Discipline of Basic Science & Humanities				
1	ENG 111	English Language	2 (1+1)		
2	MATH 111	Engineering Mathematics-I	2 (2+0)		
3	ESD 111				
4	MATH 110	Supplementary Course on Mathematics	2(2+0)*		
5	MATH 121	Engineering Mathematics-II	2 (2+0)		
6	STAT 231	Statistical Methods and Numerical Analysis	2 (1+1)		
		Total	10 (7+3)		
	Dis	scipline of Food Plant Operations (Student READY Courses	5)		
1	FPO 471	Student READY - Experiential Learning Programme - I	7 (0+7)		
2	FPO 472	Student READY - Experiential Learning Programme - II	7 (0+7)		
3	FPO 473	Student READY - Research Project	3 (0+3)		
4	FPO 474	Student READY – Seminar	1 (0+1)		
5	FPO 481	Student READY - Industrial Tour	2 (0+2)		
6	FPO 482	Student READY - Internship/In-Plant Training	20 (0+20)		
		Total	40 (0+40)		
		Grand Total of Credit Hours	180 (89+91)		

Semester-wise Course Structure for

B.Tech.(Food Technology)

	Semester-I					
1	FQA 111	3 (2+1)				
2	FQA 112	Food Chemistry of Macronutrients	3 (2+1)			
3	ENG 111	English Language	2 (1+1)			
4	MATH 111	Engineering Mathematics-I	2 (2+0)			
5	ESD 111	Environmental Sciences & Disaster Management	2 (1+1)			
6	FPE 111	Basic Electrical Engineering	3 (2+1)			
7	FPE 112	Workshop Technology	3 (1+2)			
8	FPE 113	Engineering Drawing and Graphics	3 (1+2)			
9	FBM 111	Computer Programming and Data Structures	2 (1+1)			
10	MATH 110	Supplementary Course on Mathematics	2(2+0)*			
	PED111	NCC/NSS/Physical Education	1 (0+1)*			
		Total	23(13+10)			
		* Non-Credit Course				
		Semester-II				
1	FQA 121	Food Microbiology	3 (2+1)			
2	FQA 122	Food Chemistry of Micronutrients	3 (2+1)			
3	FPE 121	Food Thermodynamics	3 (2+1)			
4	FPE 122	Fluid Mechanics	3 (2+1)			
5	FPE 123	Post-Harvest Engineering	3 (2+1)			
6	FPE 124	Basic Electronics Engineering	3 (2+1)			
7	FPT 121	Fundamentals of Food Processing	3 (2+1)			
8	MATH 121 Engineering Mathematics-II		2 (2+0)			
	PED 121	NCC/NSS/Physical Education	1 (0+1)*			
		Total	23 (16+7)			
	* Non-Credit Course					
		Semester-III				
1	FQA 231	Food Biochemistry and Nutrition	3 (2+1)			
2	FQA 232	Industrial Microbiology	3 (2+1)			
3	FPE 231	Heat and Mass Transfer in Food Processing	3(2+1)			
4	FPE 232	Food Refrigeration and Cold Chain	3 (2+1)			
5	FPE 233	Fundamentals of Food Engineering	3 (2+1)			
6	FPT 231	Processing Technology of Liquid Milk	2 (1+1)			
7	FPT 232	Processing Technology of Cereals	3 (2+1)			
8	STAT 231	Statistical Methods and Numerical Analysis	2 (1+1)			
	PED 231	NCC/NSS/Physical Education	1 (0+1)*			
		Total	22 (14+8)			
		* Non-Credit Course				
		Semester-IV				
1	FQA 241	Food Biotechnology	3 (2+1)			
2	FQA 242	Food Plant Sanitation	2 (1+1)			

			2 (0 1)			
3	FPE 241	Food Plant Utilities & Services	3 (2+1)			
4	FPT 241	Unit Operations in Food Processing	3 (2+1)			
5	FPT 242	Processing Technology of Dairy Products	3 (2+1)			
6	FPT 243	Processing Technology of Legumes and Oilseeds	3 (2+1)			
7	FPT 244	Processing of Spices and Plantation Crops	3 (2+1)			
8	FBM 241	Business Management and Economics	2 (2+0)			
	PED 241	NCC/NSS/Physical Education	1 (0+1)*			
		Total	22 (15+7)			
		* Non-Credit Course				
		Semester-V				
1	FQA 351	Instrumental Techniques in Food Analysis	3 (1+2)			
2	FPE 351	Food Storage Engineering	3 (2+1)			
3	FPE 352	Food Process Equipment Design	3 (2+1)			
4	FPT 351	Design & Formulation of Foods	3 (2+1)			
5	FPT 352	Processing Technology of Fruits and Vegetables	3 (2+1)			
6	FPT 353	Bakery, Confectionery and Snack Products	3 (2+1)			
7	FBM 351	ICT Applications in Food Industry	3 (1+2)			
8	FBM 352	Marketing Management and International Trade	2 (2+0)			
	Total 23 (14+9)					
		Semester-VI				
1	FQA 361	Food Additives and Preservatives	2 (1+1)			
2	FQA 362	Food Quality, Safety Standards and Certification	2 (2+0)			
3	FPE 361	Instrumentation and Process Control in Food Industry	3 (2+1)			
4	FPE 362	Applications of Renewable Energy in Food Processing	2(1+1)			
5	FPT 361	Processing of Meat, Fish & Poultry Products	3 (2+1)			
6	FPT 362	Processing Technology of Beverages	3 (2+1)			
7	FPT 363	Sensory Evaluation of Food Products	3 (2+1)			
8	FPT 364	Food Packaging Technology and Equipment	3 (2+1)			
9	FBM 361	Entrepreneurship Development	2 (1+1)			
		Total	23 (15+8)			
		Semester-VII				
1	FBM 471	Communication and Soft Skills Development	2 (1+1)			
2	FBM 472	Project Preparation and Management	2(1+1)			
3	FPO 471	Student READY - Experiential Learning Programme – I	7 (0+7)			
4	FPO 472	Student READY - Experiential Learning Programme – II	7 (0+7)			
5	FPO 473	Student READY - Research Project	3 (0+3)			
6	FPO 474	Student READY – Seminar	1 (0+1)			
		Total	22 (2+20)			
		Semester-VIII	× -/			
1	FPO 481	Student READY - Industrial Tour	2 (0+2)			
2	FPO 482	Student READY - Internship/In-Plant Training	20 (0+20)			
_		Total	22 (0+22)			
Cro	nd Total of C	redit Hours 180 (89+91)	(•• - =)			

Grand Total of Credit Hours 180 (89+91)

B. Tech. (Food Technology)

Mapping of Program PSOs and PO

VISION

Providing excellent food processing professionals to the industry.

MISSION

- The primary mission of the college is to produce highly skilled, competent and motivated technical manpower for food processing and allied industries.
- The technocrats so produced will also be competent to handle all the aspects of Government Departments, research institutes, quality testing laboratories and other related agencies.
- Also, the college is concerned with the exploitation of novel techniques and technologies to maximize the use of food resources.

OBJECTIVE OF PROGRAMME:

(i) To conduct under graduate academic programme in Food Technology for developing highly skilled and competent manpower for food processing industries and other agencies.

(ii) To provide knowledge and skills in the area of food processing, food engineering, food quality, food plant operations and food business management for creating potential entrepreneurs.

(iii) To undertake students and industry-oriented extension activities in the above areas by keeping liaison with different agencies for effective training and transfer of technologies.

PROGRAMME OUTCOMES (POs):

PO-1: Apply knowledge of basic science and engineering to the field of food technology.

PO-2: Identify, formulate and solve problems using knowledge of food technology.

PO-3: Design a system or process for improvement of performance, satisfying the constraints.

PO-4: Conduct experiments & collect, analyze and interpret the data.

PO-5: Apply various tools and techniques to improve the efficiency of the processed food manufacturing system.

PO-6: Implementation of cost effective and improved system.

PO-7: Proficiency in soft skills and interpersonal communication and ability to work in a multidisciplinary team

PO-8: Develop entrepreneurial abilities and awareness about startup activities

PO-9: Design the system with environment consciousness and sustainable development.

PO-10: Interact with industry, business and society in a professional and ethical manner.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

By the completion of B. Tech. (Food Technology) program, the student will have following program specific outcomes:

PSO-1: Students will develop theoretical knowledge and practical skills; along with effective communication and cognitive skills.

PSO-2: Become aware of current state of Food Technology sector and apply critical thinking and problem-solving skills to address various challenges in the food industry.

PSO-3: Understand the importance of responsibility, dependability, punctuality, self-motivation, sensitivity, respect for others and effort in the working environment.

PSO-4: Develop commitment towards the highest standards of professional integrity and ethical values.

	PSO1	PSO2	PSO3	PSO4
PO1				
PO2				
PO3				
PO4				
PO5				
PO6				
PO7				
PO8				
PO9				
PO10				

Mapping between POs and PSOs

PO = Program outcome with PSO = Program Specific outcome

SEMESTER I

1. General Microbiology (FQA 111)

(32 Lectures + 16 Practicals)

Obje	Objectives:		
1	To gain basic knowledge about microbial group		
2	To learn microscopic techniques for the observation of microbes		
3	To learn microbial growth & reproduction and its cultivation techniques		
4	To learn control of microbes using chemical and physical agents		
5	To gain basic knowledge about microbial group		

Units	Topics	Lectures
	Scope and history of microbiology	2
	(notable contributions of Leeuwenhoek, Pasteur, Koch, etc.),	
	Place of Microorganisms in living world	1
Unit 1	Groups of microorganisms	1
Unit I	Applied area of microbiology	1
	Classification and identification of micro organism	
	Major Characteristics of Microorganisms	1
	Methods of classification of bacteria	2
	Microscopy	
Unit 2	Introduction to microscope	1
Unit 2	Component of microscope	1
	Types of microscope & Microscopic techniques	2
Unit 3	Microbial Ultra Structure and Functions	
	Morphological features	1
	Structures external to cell wall	1
	Cell wall	1
	Structures internal to cell wall	2
Unit 4	Cultivation and preservation of micro-organisms	
	Nutritional requirements	1
	Types of media	1
	Physical condition required for the growth	1
	Enumeration methods for micro-organisms,	1
Unit 5	Bacterial Metabolism and Growth	
	Reproduction of bacteria	1
	Growth of bacteria: growth curve, continuous culture, synchronous	2
	culture	1
	Methods of isolation of pure cultures; Maintenance and preservation of	1
	pure cultures; Culture collections	1
Unit 6	Control of microorganisms	
	Physical and Chemical agents,	2

3 (2+1)

Unit 7	Bacterial genetics	
	Structure & functions of DNA and RNA	2
	Overview of replication and regulation	2

S. No.	Title of Experiment
1	Guidelines for safety in food microbiology laboratory work
2	Introduction to equipment's commonly used in microbiology laboratory
3	Sterilization of glassware's used in microbiology laboratory.
4	Observation of permanent slides
5	Simple Staining: Monochrome Staining
6	Simple Staining: Negative Staining
7	Differential staining: Gram's Staining
8	Differential staining: Spore Staining
9	Measuring size of microorganisms by micrometry
10	Preparation of culture media
11	Isolation of microorganisms using Streak plate method
12	Isolation and enumeration of microorganisms using Spread plate method
13	Isolation and enumeration of microorganisms using Pour plate method
14	Microbial examination of air
15	Effect of environmental factors on microbial growth
16	Microbiological examination of water for coli forms by MPN technique

Suggested Reading

Gerard J. Tortora, Berdell R. Funke, Christine L. Case. 2014. Microbiology: An Introduction, 12th Ed. Prentice-Hall, NY, USA.

Johanne M. Willey, Linda M. Sherwood and Christopher J. Woolverton. 2013. Prescott's Microbiology, 9th Ed. McGraw-Hill Higher Education, NY, USA.

Michael J. Pelczar Jr., E.C.S. Chan and Noel R. Krieg. 1998. Microbiology, 5th Ed. Tata McGraw-Hill Education, New Delhi.

Course Outcomes: On completion of course students will be able to			
CO1	CO1 Understand basic knowledge about microbial group		
CO2	Gain knowledge about microscopic techniques for the observation of microbes		
CO3	CO3 Gain theoretical and practical exposure about microbial growth & reproduction and it cultivation techniques		
CO4	CO4 Understand control of microbes using chemical and physical agents		

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				

2. Food Chemistry of Macronutrients (FQA 112)

3 (2+1)

(32 Lectures +	16 Practicals)
----------------	------------------------

Objectives:		
1.	1. To study major components of food	
2.	To know inter action of major food components to their environment	
3.	3. To study importance of major food components in diet	

Units	Topics	
	Water	
	Moisture in foods, role and type of water in foods,	2
	functional properties of water,	1
Unit 1	water activity and sorption isotherm,	2
	molecular mobility and foods stability;	1
	Dispersed systems of foods: Physicochemical aspects of food dispersion	1
	system (Sol, gel, foam, emulations); Rheology of diphase systems;	
	Carbohydrates	
	Monosaccharaides, disaccharides and polysaccharides	3
Unit 2	modification of carbohydrates,	1
	dietary fibres and carbohydrates digestibility;	1
	Enzymatic and chemical reactions of carbohydrates;	1
	Proteins	
	Proteins in foods:	2
Unit 3	Proteins and nutrition	2
Unit 5	Functional properties of proteins	2
	Processing induced, physical, chemical and nutritional changes in	1
	protein, chemical and enzymatic modification of protein;	1
	Lipids	
Unit 4	Lipids in foods:	1
	Role and use of lipids/fat,	1
	crystallization and consistency,	2

chemical aspects of lipids, lipolysis, auto-oxidation, thermal	1
decomposition, chemistry of frying technology of fat and oil;	1
Oil processing: Refining, hydrogenations, inter esterification,	2
use of oils and fats in food formulation;	1
Enzymatic and chemical reactions of fats;	1
Rancidity and its types, detection techniques, chemical aspects of lipids,	1
antioxidants;	

S. No.	Title of Experiment	
1	Determination of moisture content of foods	
2	Studies of sorption isotherms of different foods	
3	Swelling characteristics of starch	
4	Solubility characteristics of starch	
5	Determination of reducing sugars	
6	Determination of non-reducing sugars	
7	Determination of fiber content in food	
8	Determination of viscosity of food samples	
9	Texture profile analysis of food samples	
10	Determination of crude proteins by micro-Kjeldhal method	
11	Determination of protein by spectrophometer method	
12	Isolation of egg and milk protein	
13	Determination of fat content in food by Soxhelet method	
14	Determination of acid value of fat/oil	
15	Determination of saponification value fat/oil	
16	Determination of and iodine number fat/oil	

Suggested Reading

John W. Brady. 2013. Introductory Food Chemistry. Comstock Publishing Associates, Cornell University Press, Ithaca, USA.

H.-D. Belitz, W. Grosch and P. Schieberle. 2009. Food Chemisry, 4th Ed. Springer-Verlag Berlin Heidelberg.

Owen R, Fennema. 1996. Food Chemistry, 3rd Ed. Marcel Dekker, Inc., New York, USA. Lillian Hoagland Meyer. 1974. Food Chemistry. The AVI Publishing Co Inc., Connecticut, MA, USA.

Course Outc	omes:
On completio	on of course students will be able to
CO1: Major food components i.e. water, carbohydrates, proteins and lipids famaliarization	

CO2:	CO2: Interactions of food components becomes clear	
CO3:	Importance of major food components become well understood	

	PSO1	PSO2	PSO3		
CO1					
CO2					
CO3					

3. English Language (ENG 111)

2 (1+1)

(16 Lectures + 16 Practical)

	Objectives:		
		To enable students to acquire basic proficiency in English listening, speaking, reading and writing.	
F	2	To write in English accurately and efficiently.	
	3	To enable students communicate using English language	

Units	Topics Lectures	
	Importance of language and communication skills in the engineering profession	1
Unit 1	Development of vocabulary, Vocabulary building tasks	1
	Reference skills: Dictionary, thesaurus, indexing, contents, glossary	2
	Concept of register	1
	Proper use of nouns and pronouns,	1
	Proper use of adjectives and adverbs	1
Unit 2	Proper use of phrases and clauses	1
	Basic sentence patterns in English: Agreement between subject and verb; Some basic rules of composition	2
Unit 3	Spoken and conversational English: Main features, agreement, disagreement, likes, dislikes and enquiries	2
	Debate and discussion	2
Unit 4	Note-taking and note-making	1
Unit 4	Development of paragraphs; Cohesion, coherence and style	1

List of Practicals

S. No.	Title of Experiment	
1-2	Tenses	

3	Voice-change	
4	Direct/indirect narration	
5	Prepositions and determiners	
6-7	6-7 Word-formation with parts of speech	
8-9	Types of sentences and Composition	
10-11	Elementary knowledge of English sound with word-stress, intonation pattern	
12	Comprehension	
13-14	4 Letter and application writing	
15-16	16 Précis and Report writing	

Suggested Reading

Alice Oshima and Ann Hogue. 1998. Writing Academic English. Addison Wesley Longman, White Plains, NY, USA.

N. Krishnaswamy and T. Sriraman. 1995. Current English for Colleges. Macmillan India Ltd., Chennai

Course C	Course Outcomes:		
On compl	letion of course students will be able to		
CO1	Respond to the listening content.		
CO2	2 Read and comprehend English texts accurately		
CO3	CO3 Understand sentence structures in English language		
CO4	CO4 Get familiarized with English vocabulary and phrases		
CO5	CO5 Write and speak correctly in formal and informal contexts.		

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

4. Engineering Mathematics-I (MATH 111)

2(2+0)

Obj	Objectives:		
1	1. To understand the knowledge of Taylor's and Maclurin's series and partial derivatives.		
2	2. To learn the Beta and Gamma function, multiple integral and their applications.		
3	3. To learn higher order differential equation, Bessel's and Legendre's differential equation and Bernoulli's differential equation and exact differential equation.		

(32 Lectures + 00 Practical)

4	4. To learn	vector and	scalar field	and their	physical	parameter.
---	-------------	------------	--------------	-----------	----------	------------

5	5. To learn Stoke's, Divergence's and Green's theorem and solve their p	problems.
---	---	-----------

Units	Topics	Lectures
	Taylor's and Maclaurin's expansions, indeterminate form	3
	Curvature, asymptotes, tracing of curves	2
Unit 1	function of two or more independent variables, partial differentiation, homogeneous functions and Euler's theorem, composite functions, total derivatives, derivative of an implicit function, change of variables, Jacobians, error evaluation, maxima and minima	4
	Reduction formulae, Gamma and Beta functions	3
Unit 2	Rectification of standard curves, volumes and surfaces of revolution of curves	2
	Double and triple integrals, change of order of integration, application of double and triple integrals to find area and volume	2
	Exact and Bernoulli's differential equations, equations reducible to exact form by integrating factors, equations of first order and higher degree, Clairaut's equation,	3
Unit 3	Differential equations of higher orders, methods of finding complementary functions and particular integrals, Method of variation of parameters	3
	simultaneous linear differential equations with constant coefficients	1
	Cauchy's and Legendre's linear equations	1
	Bessel's and Legendre's differential equations	1
	series solution techniques	2
	Differentiation of vectors, scalar and vector point functions, vector differential operator Del	1
Unit 4	Gradient of a scalar point function, Divergence and Curl of a vector point function and their physical interpretations,	2
	Identities involving Del, second order differential operator	1
	Line, Surface and volume integrals, Stoke's, divergence and Green's theorems.	1
Total		32

Suggested Reading

B.S. Grewal. 2004. Higher Engineering Mathematics. Khanna Publishers Delhi. Shanti Narayan. 2004. Differential Calculus. S. Chand and Co. Ltd., New Delhi. Shanti Narayan. 2004. Integral Calculus. S. Chand and Co. Ltd. New Delhi. Shanti Narayan. 2004. A Textbook of Vector Calculus. S. Chand and Co. Ltd. New Delhi

Course Outcomes: On completion of course students will be able to		
CO1	CO1 Determine the Taylor's series expansion of functions and learn their applications.	
CO2	Compute multiple integral and apply them to find areas and volume of geometrical shapes, mass and centre of gravity of plane laminas.	
CO3	CO3 Compute the partial and total derivatives and maxima and minima of multivariable functions.	
CO4	To gain the knowledge of partial differentiation and to solve that applications.	
CO5	To gain the knowledge of vector and scalar field and learn the application of multivariate calculus.	

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

5. Environmental Sciences and Disaster Management (ESD 111)2 (1+1)

(16 Lectures + 16 Practical)

Obj	Objectives:		
1.	To study the environment, ecology & ecosystem and impact of technology on environmental degradation		
2.	To study population and natural resources		
3.	To gather knowledge about environmental pollution, soil pollution, air pollution, water pollution and noise pollution		
4.	To study food processing industry waste and its management; global warming and green house effects		
5.	To learn about the natural and manmade disasters along with their basic management practices		

Units	Topics	Lectures
Unit 1	Environment, components of environment, man-environment relationship, impact of technology on the environment, environmental degradation.	2
Unit 2	Ecology and ecosystems: introduction; ecology: objectives and classification, concepts of an ecosystem, structure and function of ecosystem, components of ecosystem, energy flow in ecosystem, food chains, ecological pyramids.	3

Unit 3	Population and natural resources, population and pollution, Renewable and non-renewable energy resources, Water resources, Forest resources.	2
Unit 4	Environmental pollution - Water pollution: Introduction, water quality standards, sources of water pollution, Air pollution: Composition of air, structure of atmosphere, ambient air quality standards, Land and noise pollution: Introduction, lithosphere, land uses, causes of land degradation, sources of noise pollution.	4
Unit 5	Food processing industry waste and its management; Management of urban waste water; Recycling of organic waste; Recycling of factory effluent; Control of environmental pollution through law; Composting of biological waste; Sewage, uses of water disposal effluent treatment; Current environmental global issues: Global warming and greenhouses effects.	3
Unit 6	Disaster management: natural and manmade disasters, disaster management, natural disaster management framework, financial management.	2
Total		

S. No.	Title of Experiment
1	Study of the earth's atmosphere & hydrosphere
2	Study of lithosphere and bio-sphere
3	Study of the ecosystem of a pond
4	Study of hydrological and carbon cycle
5	Study of nitrogen and sulphur cycle
6	Study of major ecosystem of the earth.
7	Study of population growth and method of population forecasting
8	Study of water resources, its overuse and related problems
9	Study of forest resources
10	Study of energy resources
11	Estimation of BOD
12	Estimation of COD
13	Study of water pollution, classification and their effects
14	Study of common air pollutants and their effects.
15 &16	Visit to ETP unit & case studies

Suggested Reading

Gilbert M. Masters and Wendell P. Ela. 2013. Introduction to Environmental Engineering and Science. Pearson Education Limited, NY, USA.

Suresh K. Dhameja. 2009. Environmental Engineering and Management. S. K. Kataria & Sons, New Delhi.

Bernard J. Nebel and Richard T. Wright. 1993. Environmental Science: The Way the World Works. Prentice-Hall Professional, New Delhi.

Bharucha Erach. 2005. Text book of environment studies for undergraduate couses. University Grants Commission, University Press, Hyderabad.

Sharma J.P. 2003. Introduction to environment science, Lakshmi Publications, Delhi Gupta P.K. 2004. Methods in environmental analysis, water, soil and air. Agro Bios, Jodhpur. Sharma R.K. & Sharma G. 2005. Natural disaster. APH publishing corporation, New Delhi Husain Majid.2013. Environment and Ecology: Biodiversity, Climate Change and Disaster Management, online book.

	Course Outcomes: On completion of course students will be able to		
CO1:	Understand importance of environment, ecology and ecosystems		
CO2:	Learn the impact of population growth on environment and precious use of natural resources and renewable energy		
CO3:	Familiarization with various types of environmental pollution and their prevention		
CO4:	Learn the food processing industry waste and its basic management practises and also about global warming and greenhouses gases effects		
CO5:	Understand various types of disasters and their management		

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1							
CO2							
CO3							
CO4							
CO5							

6. Basic Electrical Engineering (FPE 111)

3 (2+1)

(32 Lectures + 16 Practicals)

Object	Objectives:		
1.	To familiarize students with various electric circuits, electrical equipments, methods used in food technology and provide knowledge on the analysis of circuits, enabling them to understand their functions, operations, and safety precautions.		
2.	To learn the concepts of different types of electrical measuring instruments, single and three phase supply systems, ac/dc motors, transformer, electrical power measurements and distribution, circuit protection devices, electric power economics and electric wiring system.		
3.	Knowledge about skills related to basic electrical works in industries.		

4. To develop students' skills in electric equipment maintenance, troubleshooting common issues, and performing minor repairs in food industries.

Units	Topics	Lectures
Unit 1	AC Fundamentals: Definitions of cycle, frequency, time period, amplitude, Peak value, RMS value, Average value, Electro motive force, Magnetic circuits, composite magnetic circuits, magnetic leakage, hysteresis and eddy currents, phase relations and vector representation, AC through resistance, inductance and capacitance, AC series and parallel circuits, Simple R-L, R-C and R-L-C circuits	5
Unit 2	3 Phase Systems: Star and Delta connections, Relationship between line and phase voltages and currents in Star and Delta connections, various methods of single and three phase power measurement	3
Unit 3	Transformer: Principle of working, construction of single phase transformer, core type, shell type transformer, emf equation, Phasor diagrams, Ideal transformer, transformer on no load, Transformer under load, Equivalent circuits, Transformer losses, efficiency, Regulation, Open and short circuit test	4
Unit 4	Single phase induction motor: double field revolving theory, characteristics, phase split, shaded pole motors	2
Unit 5	Poly phase induction motor: Construction, operation, equivalent circuit, production of rotating field, effect of rotor resistance, torque equation, starting and speed control methods.	4
Unit 6	Alternators: principle of operation, types of rotors, emf equation	2
Unit 7	D.C. Machine (generator and motor): Types, Construction and Operation, EMF equation, armature reaction, commutation of D.C. generator and their characteristics. D.C. Motors, their starting, speed controls and characteristics	4
Unit 8	Electric Power Economics: Maximum demand charge, Load factor, Power factor and power factor improvement	2
Unit 9	Measuring Equipment's: Classification, Characteristics of different electrical measuring systems and equipment's	2
Unit 10	Electrical Wiring: system of wiring, domestic wiring installation, industrial electrification	2
Unit 11	Protection devices: Earthing, Circuit protection devices, fuses, ELCB & relays	2

List of Practicals

S. No.	Title of Experiment
1	Voltage and current relationship in 3 phase Star connection
2	Voltage and current relationship in 3 phase Delta connection
3	Measurement of Power in 3 phase circuit by wattmeter and energy meter for balanced load
	system
4	No-load test for single-phase transformer

5	Measuring no load power and power factor of single phase induction motor
6	Study of cross sectional view of squirrel cage induction motor
7	Starting of induction motors by D.O.L. starter
8	Starting of induction motors by Auto-transformer and star delta starter
9	Test on 3 phase induction motor- determination of line current, speed and power factor at
	various outputs
10	Study of D.C. motor
11	Study of electrical measuring instruments
12	Study of magger
13	Study of LT distribution components and use
14	Study of looping system of wiring
15	Study of stair case wiring system
16	Study of various circuit protection devices

Suggested Reading

B.L. Theraja and A.K. Theraja. 2005. A Textbook of Electrical Technology, Vol. II. S. Chand & Company Ltd., New Delhi.

Vincent Del Toro. 2000. Electrical Engineering Fundamentals. Prentice-Hall India Private Ltd., New Delhi.

	Course Outcomes: On completion of course students will be able to		
CO1:	Students will acquire practical skills in handling electric tools and equipment commonly used in food industries, ensuring competence in their operation.		
	Students will develop problem-solving skills related to electric equipment operation and maintenance, enabling them to troubleshoot minor issues and ensure the continuous functioning of electric lines and machinery used in food processing.		
	Students will demonstrate a strong awareness of safety protocols and hygiene standards within industries, ensuring compliance with industry regulations and best practices for food safety.		
	Students will be able to apply the knowledge gained in the subject to operationalise food processing lines, ensuring efficiency, quality, and safety in food production environments.		

	PSO1	PSO2	PSO3	PSO4
C01				
CO2				
CO3				
CO4				

7. Workshop Technology (FPE 112)

(16 Lectures + 32 Practicals)

(16 Lectures + 32 Practicals)			
Ob	Objectives:		
1.	To familiarize students with various workshop tools, machinery, and equipment used in food technology, enabling them to understand their functions, operations, and safety precautions.		
2.	To provide practical hands-on experience to students in using workshop tools and machinery relevant to food technology, ensuring proficiency in handling equipment commonly utilized in food processing and manufacturing.		
3.	Knowledge about skills related to welding, blacksmith, carpentry sheet metal, machining etc.		
4.	To develop students' skills in equipment maintenance, troubleshooting common issues, and performing minor repairs, ensuring smooth operations in food processing workshops.		

Units	Topics	Lectures
Unit 1	Introduction to basic materials: Ferrous and non-ferrous materials and important engineering materials such as timber, abrasive materials, silica, ceramics, glasses, graphite, diamond, plastic polymers and composite materials, their properties and applications	2
Unit 2	Safety measures in workshop; Indian Factory Acts on safety;Measuring and Gauging: Basic measuring instruments and gauges	1
Unit 3	Heat treatment processes: Introduction to hardening, tempering, annealing, normalizing, etc.	2
Unit 4	Welding: Introduction, types of welding, types of electrodes, types of flames, types of welding joints, edge preparation, welding techniques and equipment; Gas welding and cutting, arc welding; Introduction to soldering and brazing and their uses; Estimation of welding and soldering cost	3
Unit 5	Smithy and forging: Introduction to different tools and their uses, different forging operations	2
Unit 6	Carpentry: Introduction to various carpentry tools and materials; Type of woods and their characteristics, brief ideas about band saw, wooden lathe circular saw, wood planner, etc.	2
Unit 7	Machinery: Introduction to various workshop machines (1) Lathe, (2) power hacksaw, (3) Shaper and planner, (4) Drilling, (5) Grinder and (6) CNC machines; Length of cut, feed, depth of cut, RPM, cutting speed, time, time allowances; Estimation of machining time for different lathe operations; Estimation of machining time for shaping, slotting and planning operations, work holding and tool holding devices	3
Unit 8	Sheet-metal: Introduction, different operations, sheet metal joints; Allowances for sheet metal, operations and joints, estimate of cost.	1

S. No.	Title of Experiment
1	Identification of different engineering materials
2	Demonstration of different measuring instruments and measurement technique
3	Study of different types of gauges
4	Identification of various hand tools
5	Identification of various carpentry tools
6	Demonstration of various power tools
7	Demonstration of various machine tools
8	Simple exercises in filing
9	Simple exercises in fitting
10	Simple exercises in chipping
11	Simple exercises in hack sawing
12	Simple exercises in chiseling
13	Simple exercises in tapping
14	Introduction to arc welding machine, processes, tools, their use and precautions
15	Simple exercises on arc welding
16	Introduction to gas welding machine, processes, tools, their use and precautions
17	Simple exercises in gas welding
18	Demonstration of various casting processes and equipment, tools and their use
19	Introduction of Lathe machine
20	Simple exercises on turning
21	Simple exercises on step turning
22	Simple exercises on taper turning
23	Simple exercises on facing
24	Simple exercises on knurling
25	Introduction to drilling machines
26	Simple exercises on drilling
27	Simple exercises on threading
28	Introduction to shaper and planner machine
29	Simple exercises on shaper machine
30	Simple exercises on planner machine
31	Introduction of CNC machine
32	Simple exercises on CNC machine

Suggested Reading

B.S. Raghuwamsi. 1996. A Course in Workshop Technology, Vols. I and II. Dhanpet Rai & Sons, New Delhi.

W.A.J. Chapman. 1989. Workshop Technology, Parts I and II. Arnold Publishers (India) Pvt. Ltd., New Delhi.

S.K. Hazra Choudari and S.K. Bose. 1982. Elements of Workshop Technology, Vols. I and II. Media Promoters and Publishers Pvt. Ltd., Mumbai.

	Course Outcomes: On completion of course students will be able to		
CO1:	Students will acquire practical skills in handling workshop tools and equipment commonly used in food technology, such as mixers, cutters, grinders, and packaging machinery, ensuring competence in their operation.		
CO2:	Students will develop problem-solving skills related to equipment operation and maintenance, enabling them to troubleshoot minor issues and ensure the continuous functioning of machinery used in food processing.		
CO3:	Students will demonstrate a strong awareness of safety protocols and hygiene standards within workshop environments, ensuring compliance with industry regulations and best practices for food safety.		
CO4:	Students will be able to apply the knowledge gained in the workshop to optimize food processing techniques, ensuring efficiency, quality, and safety in food production environments.		

	PSO1	PSO2	PSO3	PSO4
C01				
CO2				
CO3				
CO4				

8. Engineering Drawing and Graphics (FPE 113)

3 (1+2)

(16 Lectures + 32 Practicals)

i.	(16 Lectures + 32 Practicals)	
0	Objectives:	
1	To acknowledge the significance of the drawing in engineering and its applications in food industries.	
2	2 To develop skills for reading different technical drawing.	
	To develop their ability to communicate through technical drawings.	
4	To expose and aware them to existing national standards related to technical drawings	
5	To improve their visualization skills so that they can apply these skill in making new and maintaining the existing products.	

Units	Topics	Lectures
Unit 1	Definition of projection, Principle of projection, Methods of projections, Orthographic projection, plane of projection, First and third angle of projection	2
Unit 2	Different methods of dimensioning	1

Unit 3	Isometric scale, Isometric axes, Isometric projection, Preparation of	2
	working drawing from models and isometric views	
Unit 4	Concept of sectioning; Revolved and oblique section	1
Unit 5	Sectional drawing of simple machine parts;	2
Unit 6	Types of rivet heads and riveted joints, Symbols for different types of welded joints; Processes for producing leak proof joints	2
Unit 7	Nomenclature, thread profiles, multi-start threads, left and right hand thread; Square headed and hexagonal nuts and bolts; Conventional representation of threads; Different types of lock nuts, studs, machine screws, cap screws and wood screws; Foundation bolts;	2
Unit 8	Drawing of missing views	1
Unit 9	Application of computers for design, definition of CAD, benefits of CAD, CAD system components; Computer hardware for CAD.	3
	Total	16

S. No.	Title of Experiment
1	Study of drawing scales
2	Study of plane and diagonal scale
3	Study of vernier, comparative and scale of chord
4	Study of principle of orthographic projects, reference plane and different quadrant
5	Drawing of orthographic projection by first angle project method
6	Drawing of orthographic projection by third angle project method
7	Drawing of projection of point
8	Drawing of projection of line
9	Drawing of projection of plane
10	Drawing of projection of solid
11	Drawing of projection of section of solid
12	Study of interpretation of solid
13	Study and drawing of development of surfaces of geometrical solids
14	Study and drawing of isometric projection
15	Preparation of manual drawing with dimension from different model
16	Preparation of manual drawing with dimension from isometric object
17	Preparation of manual drawing with dimension from machine component
18	Drawing of section of machine parts
19	Study and drawing of riveted joints
20	Study and drawing of welded joints
21	Drawing of thread and thread fasteners
22	Study of computer graphics
23	Study of computer aided drafting
24	Study and application of computer graphics in food engineering
25	Interpretation of sectional view of food equipment and components
26	Study and use of AutoCAD

27	Study of two dimensional drawing command in AutoCAD
28	Study of three dimensional drawing command in AutoCAD
29	Two dimensional drawing in AutoCAD
30	Three dimensional drawing in AutoCAD
31	Isometric drawing in AutoCAD
32	Small project using cad / cam

Suggested Reading

Ibrahim Zeid. 2004. Mastering CAD/CAM. McGraw-Hill Book Co., NY, USA.

Kunwoo Lee. 1999. Principles of CAD/CAM/CAE Systems. Prentice-Hall, USA.

N.D. Bhat and V.M. Panchal. 1995. Machine Drawing. Charotar Publishing House, Anand.

N.D. Bhat. 1995. Elementary Engineering Drawing. Charotar Publishing House, Anand.

	Course Outcomes: On completion of course students will be able to	
CO1 :	To understand the concept of projection and prepare the different views of Projection of points, lines, planes and solids.	
CO2:	To prepare and understand the multiple views from the pictorial view.	
CO3:	To understand the concept of section and draw the different sectional drawings.	
CO4:	To understand the need of different types of joints, threads, screws and bolts.	
CO5:	To prepare the missing views.	
CO6:	To use the CAD software in technical drawings.	

	PSO1	PSO2	PSO3	PSO4
C01				
CO2				
CO3				
CO4				
CO5				
CO6				

9. Computer Programming and Data Structures (FBM 111) 2 (1+1)

(16 Lectures + 16 Practicals)

Obje	Objectives:	
1.	To understand the basic of computer system and its application.	

2.	To understand C programming languages and their generations and essential skills for a logical thinking for problem solving.
3.	To write, test, and debug simple C language programs with conditionals ,loops and functions
4.	To develop C programs with user defined functions and array and string.
5.	To break the large task into small groups for implementing effective programming concepts.

Units	Topics	Lectures
Unit 1	Introduction and historical background: Review of computer technology; processor, memory, secondary storage, display devices and other peripheral devices	1
	Basic computer organisation; future trends. Brief review of present- day applications	1
	Programming. Introduction to systems software, applications software and programming language	1
Unit 2	Algorithms and flow-charts: Input-processing-output model of a computer program. Role of the compiler and the integrated development environment	2
	Introduction to C: Structure of a C program. Simple data types	1
Unit 3	Declarations; operators and expressions. The assignment statement. Library functions	1
	Control Structures : Conditional and iterative execution of statements	2
Unit 4	Importance of documentation. Nesting of control structures and the use of indentation to indicate nesting levels. Labels and the "go to" statement	1
Unit 5	Arrays; single and multi-dimensional arrays	2
Unit 5	Character strings and string functions	1
Unit 6	Functions : Scope rules. Argument passing by reference and by value. Storage classes	2
	Use of function prototypes.	1

No	Title of Experiment
1-2	Familiarizing with Turbo C IDE; Building an executable version of C program;
1-2	Debugging a C program
3-4	Developing and executing simple programs
5-6	Creating programs using decision making statements such as if, go to & switch;
5-0	Developing program using loop statements while, do & for
7-8	Using nested control structures
9-10	Familiarizing with one and two dimensional arrays;
11-12	Using string functions
13-14	Creating user defined functions;

Using local, global & external variables with the user defined function; Libarary Functions
Functions

Suggested Reading

Yashavant Kanetkar. 2012. let us C, 13th Ed. BPB Publications, New Delhi.

E. Balagurusamy. 2012. Programming in ANSI C 6th Ed. Tata McGraw-Hill Publishing Company Limited, New Delhi.

Svetlin Nakov & Co. 2013. Fundamentals of Computer Programming with c#. Sofia, Bulgaria.

Course Ou	Course Outcomes:			
On comple	tion of course students will be able to			
CO1:	CO1: Understands programming methodologies by learning algorithm and flowcharts			
CO2:	Understand the working principle of a computer and identify the purpose of a computer programming language and ability to identify an appropriate approach to solve the problem.			
CO3:	To write, test, and debug simple C programs with conditions, loops and functions.			
CO4:	Develop C programs step-wise by defining functions and calling them.			
CO5:	Relate and apply arrays and strings into programs			

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

NCC/NSS/Physical Education (PED111)

1 (0+1)*

* Non-Credit Course

Obj	Objectives:		
1.	Understand the community in which they work		
2.	Understand themselves in relation to their community		
3.	Identify the needs and problems of the community and involve them in problem-solving		
4.	Develop among themselves a sense of social and civic responsibility		
5.	Utilise their knowledge in finding practical solutions to individual and community problems		
6.	Develop competence required for group-living and sharing of responsibilities		
7.	Gain skills in mobilising community participation		
8.	Acquire leadership qualities and democratic attitudes		

Develop capacity to meet emergencies and natural disasters and practise national integration and social harmony 9.

Course Outcomes:

On completion of course students will be able to

-	
CO1:	Improve the quality of educated manpower by fostering social responsibility
CO2:	Raising society to a higher material and moral level by preparing students for final dedication in the service of nation
CO3:	Introduce urban students to rural life by living in contact with the community in whose midst their institution is located
CO4:	Making campus relevant to the needs of the community
CO5:	Involvement in the tasks of national development
CO6:	Better understanding and appreciation of the problems of the society
CO7:	Encourage Community participation

	PSO1	PSO2	PSO3	PSO4
C01				
CO2				
CO3				
CO4				
CO5				
CO6				
CO7				

Supplementary Course on Mathematics (MATH 110)

2(2+0)*

* Non-Credit Course

(16 Lectures + 0 Practicals)

Obje	Objectives:				
1.	Develop a positive attitude towards learning Mathematics				
2.	To familiarize the students with basic concept of mathematics				
3.	Identify, concretise, symbolise and use mathematical relationships in everyday life				
4.	Collect, organize, represent, analyse, interpret data and make conclusions and predictions from its				
	results				

Units	Topics	Lectures
Unit 1	Algebra: Binomial theorem (without proof) for positive Integral Index (expansion and general term); Binomial theorem for any index (expansion only) first and second binomial approximation with application to engineering problems. Partial fractions (linear factors,	
	repeated linear factors, non-reducible quadratic factors). Determinants	

	and Matrices- expansion of determinants (up to third order) using sarrus	
	rule. Properties of determinants, Minors and Cofactors, solution of	
	equations (up to 3 unknowns) by Cramer's rule. Definition of matrix,	
	addition, subtraction and multiplication of matrices (up to third order).	
	Inverse of a matrix by adjoint method. Solution of equations (up to 3	
	unknowns) by Matrix method.	
	Vectors: Definition of vector and scalar quantities. Addition and	
	subtraction of vectors. Dot product and cross product of two vectors.	
TI	Thumb rule. Angle between two vectors	
Unit 2	Vectors: Definition of vector and scalar quantities. Addition and	
	subtraction of vectors. Dot product and cross product of two vectors.	
	Thumb rule. Angle between two vectors	
	Trigonometry: Addition, subtraction and product formulae.	
	Transformation from product to sum or difference of two angles or	
Unit 3	vice versa, multiple and submultiple angles, Conditional identities,	
	solution of triangles (excluding ambiguous cases), Periodic function,	
	Series of function.	
TT 1 1	Function, Limits & Continuity: Concept of Function, Limit &	
Unit 4	Continuity, Standard Formulae and related Examples.	
	Differentiation: Definition, Working rules of differentiation,	
	differentiation of a composite function and chain rule, differentiation of	
Unit 5	parametric functions and Implicit functions, Logarithmic	
Chite	differentiation, differentiation of one function w.r.t. another function,	
	Successive differentiation up to second order.	
	Integration: Indefinite integration- Definition, standard integrals,	
	Integration by the method of substitution and method of trigonometric	
Unit 6	substitution, Law of integration by parts, Method of partial fractions,	
	Definite Integration: working rules.	
	Complex Numbers: Introduction, Real and Imaginary parts of complex	
	number, Polar and Cartesian representation of a complex number and	
Unit 7	conversion from one form to the other, conjugate of a complex number,	
Unit /	modulus and argument of a complex number, addition, subtraction,	
	multiplication and division of a complex number.	
	multiplication and division of a complex number.	

No	Title of Experiment
NO	NO

Suggested Reading

- 1. Higher Engineering Mathematics by BS Grewal; Khanna Publishers, Delhi
- 2. Engineering Mathematics by Dass Gupta, S Chand
- 3. Plane Trigonometry by S. L. Loney, M.A., Cambridge University Press, 1983
- 4. Algebra and Trigonometry by Ron Larson, Cengage Publisher

- 5. Advance Engineering Mathematics10th Edition by Erwin Kreyszig, John Wiley & Sons, Inc. Publishers Laurie Rosatone
- 6. Advanced Engineering Mathematics by AB Mathur and VP Jagi; Khanna, Publishers, Delhi
- 7. Limits and Derivatives Made Easy by Deepak Bhardwaj, Laxmi Publications Pvt. Ltd., New Delhi
- 8. Differentiation and Integration by W. Bolton, Published by Routledge, New York

Thomas' Calculus Early Transcendentals Thirteenth Edition based on the original work by George B. Thomas, Jr. as revised by Maurice D. Weir and Joel Hass, Cenveo Publisher Services

	Course Outcomes:			
On completio	on of course students will be able to			
CO1:	Demonstrate understanding of common mathematical methods and how they are used to obtain food process related solutions.			
CO2 :	Students would be able to apply basic mathematical knowledge to solve real life problems.			
CO3:	They can use the basics of mathematics for financial analysis and insight in food industries for further development.			
CO4:	Students will be capable of developing mathematical models that describe food processes, allowing them to analyse and predict behaviour under different conditions, aiding in process optimization and innovation in food technology.			
CO5:	Students will enhance their critical thinking and problem-solving skills, enabling them to tackle complex challenges in food technology using computational approaches.			

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

SEMESTER II

1. Food Microbiology (FQA-121)

(32 Lectures + 16 Practicals)

(32 Lectures + 16 Practicals)			
Oł	Objectives:		
1	To learn significance of microorganisms associated to food and food products.		
2	To learn the sources, growth characteristics, metabolism of microorganisms.		
3	To understand the role of microbes in spoilage and pathogenesis.		
4	To gain knowledge on the methods of isolating and characterizing microbes associated with foods.		
5	To understand the methods used to detect pathogens in foods.		

Units	Topics	Lectures
Unit 1	Importance and significance of microbes in food science	2
Unit 2	Sources of microorganisms in foods and	2
Onit 2	their effective control	2
	Factors affecting growth and survival of microorganisms in foods:	
Unit 3	Intrinsic factors i.e., pH, water activity, nutrients, redox potential,	
Onit 5	oxygen etc., Extrinsic factors: Relative humidity, temperature, gaseous	2
	atmosphere etc.	2
	Normal Microbiological quality of Foods and its significance:	
	milk and milk products, fruits and vegetables, cereals and cereal	2
Unit 4	products, meat and meat products, fish and other sea foods, poultry	1
	and eggs;	1
	sugar and sugar products, slats and spices and canned foods	1
	Chemical changes caused by microorganisms:	
Unit 5	Changes in nitrogenous organic compounds,	2
Onit 5	non-nitrogenous organic compounds, organic acids, other compounds,	1
	lipids, pectic substances	1
	Shelf life:	
	Calculation of shelf lif, Shelf life requirements,	1
Unit 6	deteriorative reactions, accelerated testing;	1
	Simulations of product: Package environment interaction, shelf life	2
	simulation for moisture, oxygen, and light sensitive products;	2
	Microbial toxins:	
Unit 7	Bacterial toxins,	2
Omt /	fungal toxins,	1
	algal toxins and mushroom toxins	1
	Food borne intoxications and infections:	
Unit 8	types of food involved, toxicity and symptoms,	2
	chemical properties, environmental conditions	2

3 (2+1)

Unit 9	Food borne viruses: types of food involved, noroviruses, rota viruses,	2
	Food borne viruses: types of food involved, noroviruses, rota viruses, prion diseases, toxicity and symptoms	2

S. No.	Title of Experiment
	Isolation of bacteria and molds from foods; vegetable and fruits/meat and meat
1	products/fish and other sea foods/ eggs and poultry/ milk and milk products/
	sugar, salts and spices/Fermented foods
	Isolation of bacteria and molds from foods; vegetable and fruits/meat and meat
2	products/fish and other sea foods/ eggs and poultry/ milk and milk products/
	sugar, salts and spices/Fermented foods
3	Microbial examination of cereal and cereal products
4	Microbial examination of vegetable and fruits
5	Microbial examination of canned products for Anaerobic spores
6	Microbial examination of canned products for yeasts and molds
7	Microbial examination of milk
8	Microbial examination of milk products
9	Microbial examination of sugar, salts and spices
10	Determination and enumeration of pathogenic and indicator organisms in foods
10	(Coliform/Enterococcus)
11	Thermal death time determination
12	Detection of Salmonella from food sample
13	Detection of coliforms from milk by MPN method
14	Detection of Staphylococcus aureus from food sample
15	Enumeration of important groups of microorganisms in foods ie., Proteolytic,
15	lipolytic, acid producers
16	Enumeration of important groups of microorganisms in foods i.e.,
10	Psychrotrophic, thermoduric, thermophilic bacteria

Suggested Reading

Bibek Ray and Arun Bhunia. 2008. Fundamental Food Microbiology, 4th Ed., CRC press, Taylor and Francis Group, USA.

Martin R. Adams and Maurice O. Moss. 2008. Food Microbiology, 3rd Ed., The Royal Society of Chemistry, Cambridge, UK.

James M. Jay. 2000. Modern Food Microbiology, 6th Ed. Aspen Publishers, Inc., Gaithersburg, Maryland, USA.

George J. Banwart. 1989. Basic Food Microbiology, 2nd Ed. Chapman & Hall, New York, USA. William C. Frazier and & Dennis C. Westfoff. 1987. Food Microbiology, 4th Ed. Tata McGraw-Hill Education, New Delhi.

	Course Outcomes: On completion of course students will be able to		
CO1.	Understand the significance of microbes associated to food and food products.		
CO2.	Understand about the various types of microbes associated with food spoilage and pathogenesis.		
СО3.	Understand and identify the role of microbes in food preservation.		
CO4.	Comprehend the various techniques for isolation and characterization of microbes.		
CO5.	Apply the learnt techniques to detect the pathogens associated with the foods to ensure food safety and quality.		

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

2. Food Chemistry of Micronutrients (FQA 122)

3 (2+1)

(32 Lectures + 16 Practicals)

<u>(52 Lectures + 10 Practicals)</u>		
Objectives:		
1.	1. To study about vitamin and minerals	
2.	Know importance of flavour and learn about various tastes and flavours	
3.	3. To study food colours	
4.	4. To study enzymes and anti-nutritional factors	

Units	Topics	Lectures
	Flavour	
Unit 1	Philosophy and definitions of flavour,	1
Unit I	Chemistry of food flavour; flavourmatics/flavouring compounds,	1
	sensory assessment of flavour, technology for flavour retention;	1
	Pigments	
	Pigments in animal and plants kingdoms: Heme pigments, chlorophyll,	2
Unit 2	carotenoids, phenolic and flavonoids, betalins,	
	effect of processing on pigment behaviour;	1
	Technology for retention of natural colours of food stuffs;	1

	Food colorants	
Unit 3	Popular colors used in food and their fictional properties	2
Unit 5	Regulatory use of regulatory dyes; Colour losses during thermal	2 1
	processing;	1
	Vitamins	
	Vitamin functions in body and deficiency conditions	3
Unit 4	Requirements, allowances,	1
	enrichment, restorations, fortifications,	2
	losses of vitamins, optimization and retention of vitamins;	2
	Minerals	
	Important minerals and their function in body and deficiency conditions	3
Unit 5	Requirements, allowances,	
	enrichment, restorations, fortifications,	2
	losses of minerals, optimization and retention of minerals;	1
Unit 6	Antinutritional Factors	
Onito	Various antinutitional factors their mode of action and inactivation	1
	Enzymes in Food Industry	
	Carbohydrases,	1
	proteasase,	1
Unit 7	lipases;	1
	Modification of food using enzymes:	2
	Role of endogenous enzymes in food quality,	2
	enzymes use as processing aid and ingredients	1

S. No.	Title of Experiment
1	Determination of Total Ash
2	Determination of Acid Insoluble Ash
3	Preparation of mineral solution by using ash and tri-acid
4	Estimation of calcium
5	Determination of phosphorus
6	Determination of iron
7	Colour representation system and measurement of colour
8	Estimation of tannins and phytic acid from food
9	Determination of Vitamin A
10	Determination of Vitamin C
11	Determination of Vitamin E
12	Determination of Thiamine
13	Determination of Riboflavin

14	Determine activity of enzyme
15	Compititive Inhibition of Enzymes
16	Study of enzyme kinetics

Suggested Reading

H.-D. Belitz, W. Grosch and P. Schieberle. 2009. Food Chemisry, 4th Ed. Springer-Verlag Berlin Heidelberg.

Owen R, Fennema. 1996. Food Chemistry, 3rd Ed. Marcel Dekker, Inc., New York, USA.

Course Outcomes: On completion of course students will be able to	
CO1:	Role of vitamins and minerals is well understood
CO2:	Knowledge gained about taste and flvuor perception and their causatives
CO3:	Familiarization about natural and synthetic food colorants used in food
CO4:	Utility of use of enzyme in food processing is elucidated along with knowledge of anti-nutritional factors

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1							
CO2							
CO3							
CO4							
CO5							

3. Food Thermodynamics (FPE 121)

Г

3 (2+1)

(32 Lectures + 16 Practical)

Obj	Objectives:				
1.	To introduce students to the fundamental principles of thermodynamics and their applications in the context of food systems, focusing on energy-work interactions, heat flow, phase transitions, and equilibrium in food processing.				
2.	To educate students on utilizing thermodynamic principles to assess and control food quality, shelf-life, and safety by understanding the effects of temperature, pressure, and other variables on food stability and degradation.				
3.	To teach students how to use thermodynamic concepts to optimize food processing techniques, aiding in the design and improvement of processes for efficient energy utilization and preservation of nutritional and sensory attributes.				
4.	To develop students' problem-solving and analytical skills by applying thermodynamic principles to analyse and solve challenges related to food processing, preservation, and storage.				

Units	Topics	Lecture	
Unit 1	Basic concepts: definitions, approaches, thermodynamic systems, thermodynamic properties and equilibrium, state of a system, state diagram, path and process, different modes of work, Zeroth law of thermodynamics, concept of temperature, heat.		
Unit 2	First law of thermodynamics: Energy, enthalpy, specific heats, applications of first law, steady and unsteady flow analysis		
Unit 3	Second law of thermodynamics: Kelvin-Planck and Clausius statements, reversible and irreversible processes, entropy, availability and irreversibility		
Unit 4	Properties of Pure Substances: Thermodynamic properties of pure substances in solid, liquid and vapor phases, P-V-T behaviour of simple compressible substances, phase rule		
Unit 5	Thermodynamic cycles: Carnot vapor power cycle, ideal Rankine cycle, air standard Otto cycle, air standard Diesel cycle, vapor- compression refrigeration cycle		
Unit 6	Psychometry: thermodynamic properties of moist air, perfect gas relationship, absolute humidity, relative humidity, percentage humidity, humid volume, total heat, enthalpy, dry bulb temperature, wet bulb temperature, dew point temperature, adiabatic processes, wet bulb depression, humid heat, specific volume, heating, cooling, dehumidifying, sorption isotherms		
Unit 7	Three stages of water, phase diagram for water, vapour pressure- temperature curve for water, heat requirement for vaporization, measurement of humidity		
Unit 8	Boilers and steam generation: fuels for boilers and steam generation, boiler types, boiler mountings and accessories, Introduction to Indian Boiler Regulation Act. Layout of steam pipe-line and expansion joints. <i>Boiler Draught:</i> Definition, importance and classification of draught, Natural and artificial draught, Calculation of Height of chimney, draught analysis; Properties of steam: Wet, dry saturated, superheated steam, use of steam tables	6	
		32	

S. No.	Title of Experiment
1	Demonstration and application of zeroth law of thermodynamics
2	Demonstration and application of first law of thermodynamics
3	Demonstration and application of second law of thermodynamics
4	Study of different types of boilers
5	Study of boiler mounting and accessories

6	Study of various types of burners and fuels
7	Determination of calorific values of different fuels
8	Study of vapour compression refrigeration test rig
9	Study of heat pump
10	To study properties of wet, dry, saturated and superheated steam
11	Use of steam tables and Moiler charts
12	Determination of dryness fraction of steam
13	Determination of thermodynamic properties on psychrometric charts
14	Use of psychometric chart for humidification, dehumidification, heating and drying
15	Study of steam trap and steam line layouts
16	Visit to food plant with steam utilization
17	Problems on thermodynamic applications

R.K. Rajput. 2007. Engineering Thermodynamics, 3rd Ed. Laxmi Publications (P) Ltd., Bangalore. P.K. Nag.2005. Engineering Thermodynamics, 3rd Ed. Tata-McGraw-Hill Education, New Delhi.

J.M. Smith, H.C. Van Ness and M.M. Abbott. 2005. Introduction to Chemical Engineering Thermodynamics, 7th Ed. McGraw-Hill, Inc., NY, USA.

Warren L. McCabe, Julian Smith, Peter Harriott. 2004. Unit Operations of Chemical Engineering, 7th Ed. McGraw-Hill, Inc., NY, USA.

Christie John Geankoplis. 2003. Transport Processes and Separation Process Principles (Includes Unit Operations), 4th Ed. Prentice-Hall, NY, USA.

Donald B. Brooker, Fred W. Bakker-Arkema and Carl W. Hall. 1976. Drying Cereal Grains. The AVI Publishing Company, Inc., Connecticut, MA, USA.

Course Outcomes: On completion of course students will be able to		
CO1:	Students will acquire a strong understanding of fundamental thermodynamic concepts and their relevance to food systems, enabling them to interpret and analyse heat and mass transfer phenomena in food processing.	
CO2:	Students will be able to apply thermodynamic principles to evaluate and optimize food processing methods.	
CO3:	Students will gain the ability to assess and predict food stability, degradation, and shelf-life based on thermodynamic principles, aiding in the development of strategies to prolong food freshness and safety.	
CO4:	With knowledge of food thermodynamics, students will be capable of optimizing food processing techniques, minimizing energy consumption, and maximizing efficiency while maintaining or enhancing food quality attributes.	
CO5:	Through the application of thermodynamic principles to food technology, students will enhance their critical thinking abilities, enabling them to address complex challenges in food processing and preservation systematically.	

CO6:	Students will develop the capacity to communicate effectively about the application of thermodynamics in food technology, enabling them to convey complex concepts and their implications to various stakeholders in the food industry.

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				
CO6				

4. Fluid Mechanics (FPE 122)

3 (2+1)

(32 Lectures + 16 Practical)

Obje	Objectives:		
1.	To learn about the fluids through the properties of the fluids, and its behaviour.		
2.	To aware about flow measurement.		
3.	To educate the fluid kinematic and fluid dynamic.		
4.	To acquired knowledge about flow of fluid in open channel and pipe channel.		
5.	To understand the mechanism of different pump used in food industries.		

Units	Topics	Lecture
Unit 1	Units and dimensions; Properties of fluids; Static pressure of liquids: Hydraulic pressure, absolute and gauge pressure, pressure head of a liquid; Pressure on vertical rectangular surfaces	3
Unit 2	Flow behavior of viscous fluids; Compressible and non-compressible fluids; Surface tension, capillarity	3
Unit 3	Pressure measuring devices: Simple, differential, micro-, inclined manometer, mechanical gauges, piezometer	3
Unit 4	Floating bodies: Archimedis principle, stability of floating bodies; Equilibrium of floating bodies, metacentric height	2
Unit 5	Fluid flow: Classification, steady, uniform and non-uniform, laminar and turbulent, continuity equation; Bernoulli's theorem and its applications	4

	centrifugal pumps, Submersible pumps; Reciprocating pumps: Working of reciprocating pump, double acting pump, instantaneous rate of discharge, acceleration of piston and water, gear pump; Pressure variation, work efficiency; Pressure requirements for viscous foods to lift them to different heights and selection of pumps	5
Unit 9	Pumps: classification, centrifugal pumps, submersible pumps, reciprocating pumps, positive displacement pump; Centrifugal pumps: Pumps in series and parallel, basic equations applied to centrifugal pump, loss of head due to changed discharge, static head, total head, manometric head, manometer efficiency, operating characteristics of	
Unit 8	Dimensional analysis: Buckingham's theorem application to fluid flow phenomena, Froude Number, Reynolds number, Weber number and hydraulic similitude	4
Unit 6 Unit 7	Navier-Stokes equations in cylindrical co-ordinates, boundary conditions; Simple application of Navier-Stokes equation: Laminar flow between two straight parallel boundaries Flow through pipes: Loss of head, determination of pipe diameter; Determination of discharge, friction factor, critical velocity; Flow through orifices, mouthpieces, notches and weirs; Vena contracta, hydraulic coefficients, discharge losses; Time for emptying a tank; Loss of head due to contraction, enlargement at entrance and exit of pipe; External and internal mouthpieces, types of notches, rectangular and triangular notches, rectangular weirs; Venturimeters, pitot tube, rotameter; Water level point gauge, hook gauge	4

S. No.	Title of Experiment
1	Study of different types of pipes, pipe fittings, tools and materials for fittings
2	Study of different types of valves used in dairy and food processing
3	Study of manometers and other pressure measuring devices
4	Verification of Bernoulli's theorem
5	Determination of critical Reynold's number by Reynold apparatus
6	Calibration of Pitot tube
7	Determination of discharge co-efficient for venturimeter
8	Flow measurement through rectangular venturimeter
9	Determination of discharge co-efficient for orifice
10	Determination of discharge co-efficient for rectangular notch
11	Determination of discharge co-efficient for V-notch
12	Calibration of rotameter
13	Visualize and analyse the flow patterns
14	Determination of losses in pipe due to friction
15	Determination of losses due to pipe fittings such as elbow, bend, coupling
16	Study and operation of centrifugal and other pumps used in dairy and food processing
	plants

Frank M. White. 2010. Fluid Mechanics, 7th Ed. McGraw-Hill Book Co., Inc., Boston, USA. Yunus A. Çengel and John M. Cimbala. 2006. Fluid Mechanics: Fundamentals and Applications. McGraw-Hill, Inc., New York, USA.

Bruce R. Munson, Donald F. Young and Theodore H. Okiishi. 2002. Fundamentals of Fluid Mechanics, 4th Ed. John Wiley & Sons, Inc., New York, USA.

E. John Finnemore and Joseph B. Franzini. 2002. Fluid Mechanics with Engineering Applications, 10th Ed. McGraw-Hill, Inc., New York, USA.

R. Byron Bird, Warren E. Stewart and Edwin N. Lightfoot.2002. Transport Phenomena, 2nd Ed. John Wiley & Sons, Inc., New York, USA.

Noel de Nevers. 1991. Fluid Mechanics for Chemical Engineers. McGraw-Hill, Inc., New York, USA.

Victor L. Streeter. 1962. Fluid Mechanics, 3rd Ed. McGraw-Hill Book Co., Inc., Boston, USA.

Course Outcomes:

On completion of course students will be able to

CO1:	To understand about the different pipes, pipes fitting and its uses in food industries.
CO2: To understand the properties of fluids.	
CO3:	To Interpret the flow measurements and transportation of fluids.
CO4:	To analyses the fluid kinematics and fluid dynamics.
CO5:	To understand the uses and application of pumps in the field of food technology.

	PSO1	PSO2	PSO3	PSO4
C01				
CO2				
CO3				
CO4				
CO5				

5. Post-Harvest Engineering (FPE 123)

3 (2+1)

(32 Lectures + 16 Practical)

Objectives:		
1.	To establish the knowledge about various post-harvest operations and importance of loss reduction after harvesting	

2.	To familiarize the students with properties of food materials
3.	To familiarize with different unit operations viz. cleaning, sorting, grading, separation and equipments used for these.
4.	To understand the milling operation and milling equipments.
5.	To recognize the various conveyors used in material handling.

Units	Topics	Lecture		
Unit 1	Overview of Post-Harvest Technology Concept and science, Introduction to different agricultural crops, their cropping pattern, production, harvesting and post-harvest losses, reasons for losses, importance of loss reduction, Post-Harvest Handling operations			
Unit 2	Water Activity Water binding and its effect on enzymatic and non-enzymatic reactions and food texture, control of water activity and moisture	2		
Unit 3	Engineering Properties of Food Materials physical, thermal, aerodynamic, optical, mechanical, rheological and electromagnetic properties and their measurement	4		
Unit 4	Cleaning Cleaning of grains, washing of fruits and vegetables, types of cleaners, screens, types of screens, rotary screens, vibrating screens, machinery for cleaning of fruits and vegetables (air cleaners, washers), cleaning efficiency, care and maintenance; Peeling	3		
Unit 5	Sorting and Grading Sorting, grading, methods of grading; Grading- Size grading, colour grading, specific gravity grading; screening, equipment for grading of fruits and vegetables, grading efficiency, care and maintenance	4		
Unit 6	Separation Magnetic separator, destoners, electrostatic separators, pneumatic separator	2		
Unit 7	Decorticating and Shelling Principles of working, design and constructional details, operating parameters, maintenance, etc. of various decorticators/dehullers/shellers, description of groundnut decorticators, maize shellers, etc.	2		
Unit 8	Milling Milling, polishing, grinding, milling equipment, dehuskers, polishers (abrasion, friction, water jet), flour milling machines, pulse milling machines, grinders, cutting machines, oil expellers, machine efficiency and power requirement	5		
Unit 9	Materials Handling	2		

	Introduction to different conveying equipment used for handling of grains, fruits and vegetables; Scope and importance of material handling devices	
Unit 10	handling devices Study of different Material Handling systems Classification, principles of operation, conveyor system selection/design Belt conveyor: Principle, characteristics, design, relationship between belt speed and width, capacity, inclined belt conveyors, idler spacing, belt tension, drive tension, belt tripper Chain conveyor: Principle of operation, advantages, disadvantages, capacity and speed, conveying chain Screw conveyor: Principle of operation, capacity, power, troughs, loading and discharge, inclined and vertical screw conveyors Bucket elevator: Principle, classification, operation, advantages, disadvantages, capacity, speed, bucket pickup, bucket discharge, relationship between belt speed, pickup and bucket discharge, buckets types, power requirement Pneumatic conveying system: types, air/product separators; Gravity conveyor design considerations, capacity and power requirement.	5
		32

S. No.	Title of Experiment
1	Determination of shape and size of food materials
2	Determination of densities, porosity and specific gravity of solid/powder materials
3	Determination of terminal velocity and angle of repose of grain sample
4	Determine co-efficient of external and internal friction of different crops
5	Study of Thermal and rheological properties of food materials
6	Study of Optical properties measurement equipment/instruments
7	Study of cleaners and washers for agricultural produces
8	Study of graders for agricultural produces
9	Study of decorticators
10	Study of Maize shellers
11	Study of crop dryers
12	Study of rice milling machines
13	Study of pulse milling machines
14	Study of different components of flour mill
15	Study of oil expeller
16	Study of different materials handling equipment

Suggested Reading

A. Chakraverty. 2008. Post Harvest Technology of Cereals, Pulses and Oilseeds, 3rd Ed. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi.

Amalendu Chakraverty and R. Paul Singh. 2014. Post Harvest Technology and Food Process Engineering. CRC Press, Boca Raton, FL, USA.

Carl W. Hall and Denny C. Davis. 1979. Processing Equipment for Agricultural Products. The AVI Publishing Company, Inc., Connecticut, MA, USA.

Don W. Green and Robert H. Perry. 2008. Perry's Chemical Engineers' Handbook. McGraw-Hill Co., Inc., NY, USA.

G. Boumans. 1985. Grain Handling and Storage. Elsevier Science Publishers, Amsterdam, The Netherlands.

James G. Brennan. 2006. Food Processing Handbook. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.

K.M. Sahay and K.K. singh. 2001. Unit Operations of Agricultural Processing. Vikas Publishing House Pvt. Ltd., Noida, UP.

Mohsenin, Nuri N. 1980. Thermal Properties of Foods and Agricultural Materials. Gordon and Breach Science Publishers, New York.

Mohsenin, Nuri N. 1984. Electromagnetic Radiation Properties of Foods and Agricultural Products. Gordon and Breach Science Publishers, New York.

Mohsenin, Nuri N. 1986. Physical Properties of Plant and Animal Materials : Structure, Physical Characteristics and Mechanical properties, 2nd Ed. Gordon and Breach Science Publishers, NY.

R.L. Earle. 1983. Unit operations in Food Processing. Pergamon Press, New York, USA.

S.M. Henderson and R.L. Perry. 1966. Agricultural Process Engineering, 2nd Ed. The AVI Publishing Company, Inc., Connecticut, MA, USA.

	Course Outcomes: On completion of course students will be able to		
CO1:	Have an idea of the basic post-harvest operations and to be able to apply the post-harvest technologies to prevent loss.		
CO2:	Gain an understanding of various engineering properties of the food material.		
CO3:	Infer the different cleaning, threshing, separation and grading operations involved in food industry and farm level.		
CO4:	To be able to select and utilize the suitable milling equipment's for different food materials.		
CO5:	Utilize the conveyors in the food industry.		

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

6. Basic Electronics Engineering (FPE 124)

(32 Lectures + 16 Practicals)

Obje	Objectives:			
1.	To introduce semiconductor circuits and provide knowledge on the analysis of circuits			
2.	To provide knowledge on the principles of electronic devices.			
3.	State linear and non-linear applications of operational amplifiers.			
	Understand digital gates and apply Boolean algebra for minimization of Boolean expression and implement various combinational circuits.			
5.	Understanding of principle, operation and analysis of digital electronics			

Units	Topics	Lectures			
Unit 1	Semiconductors, P-n junction, V-I characteristics of P-n junction, diode as a circuit element, rectifier; Diode circuits for OR and AND (both positive and negative logic); voltage multiplier, filter circuits	6			
	Bipolar junction transistor: Operating point, classification (A, B and C) of amplifier, various biasing methods (fixed, self, potential divider)				
Unit 2	Ideal OP-AMP characteristics, linear and non-linear applications of OP- AMP integrator, active rectifier, comparator, differentiator, differential, instrumentation amplifier and oscillator), Zener diode voltage regulator, transistor series regulator, current limiters, OP-AMP voltage regulators	6			
Unit 3	Basic theorem of Boolean algebra; Combinational logic circuits (basic gates, SOP rule and K-map) and sequential logic circuits binary ladder D/A converter and A/D converter	6			
Unit 4	Transducers: Classification, selection criteria, characteristics, sensors and actuators construction, working principles, applications of following transducers- Potentiometers RTD, thermocouples, thermistors, LVDT, strain gauges, capacitive and inductive transducers, piezoelectric transducers, photoelectric transducers, self-generating	4			

	transducers, variable parameter type, digital, actuating and controlling devices	
Unit 5	Measurement of displacement, temperature, velocity, force and pressure using potentiometer, resistance thermometer, thermocouples	4

S. No.	Title of Experiment		
1	Study of PN Junction diode characteristics;		
2	Study of Zener diode Characteristics		
3	Study of Diode as Clipper and Clamper.		
4	Study of Half Wave Rectifier with and without filters		
5	Study of Full wave Center tap Rectifier with and without filters		
6	Study of Full Wave Bridge rectifiers with and without filters		
7	Study and verification of Basic and universal logic gates (AND, OR, NOT, NAND &		
	NOR)		
8	Study of Implementation of Basic Logic Gates using Universal Logic Gates.		
9	Study of Flip -Flop and Counters.		
10	Study of Transistor Characteristics in Common Emitter Configuration;		
11	Study of Transistor Characteristics in Common Base Configuration;		
12	To design study fixed and self-bias transistor.		
13	To design study potential divider bias transistor.		
14	Study of OP-Amp IC 741 as differential amplifier;		
15	Study of OP-Amp IC 741 as active rectifier		
16	To familiarize with various types of transducers.		

Suggested Reading

A. Anand Kumar. 2014. Fundamentals of Digital Circuits. PHI Pvt. Ltd., New Delhi.

A.K. Sawhney. 2010. Course in Electrical and Electronics Measurements and Instrumentation. Dhanpat Rai Publications (P) Limited, New Delhi.

V.K. Mehta and Rohit Mehta. 2008. Principles of Electronics. S. Chand and Co., New Delhi.

D. Choudhury Roy. 2003. Linear Integrated Circuits. John Wiley International, NY.

Sanjeev Gupta. 2002. Electronic Devices and Circuits. Dhanpat Rai Publications (P) Limited, New Delhi.

Course Outcomes: On completion of course students will be able to			
CO1.	CO1. Analysis and Application of basic semiconductor devices.		
CO2. Understand the principles of different types of electronic devices & transducers			
соз.	Develop & Enhance their skills in basics of analog and digital circuits		

CO4. Design and troubleshoot hardware circuits like filters, comparators, PID contros oscillators, digital logic gates, timer and counters.		
CO5.	Understand different types of transducers sensors, its working principals and their applications	

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

7. Fundamentals of Food Processing (FPT 121)

(32 Lectures + 16 Practicals)

3 (2+1)

Obje	Objectives:				
1.	To familiarize the students with food processing				
2.	Gain an understanding of the perishability of food and causes for food spoilage				
3.	Have an idea of the basic methods of preservation of food				
4.	Knowledge about non-thermal processing of food				
5.	Understand the concept of quality and shelf life of processed food products				

Units	Topics	Lectures		
Unit 1	Sources, types and perishability of foods; Causes and types of food spoilage; Scope and benefit of food preservation	03		
Unit 2	Methods of food preservation; Preservation by salt and sugar: Principle, method and effect on food quality			
Unit 3	Preservation by heat treatment: Principle and equipment for blanching, canning, pasteurization, sterilization	04		
Unit 4	Preservation by use of low temperature: Principle, methods, equipment	03		
Unit 5	Preservation by drying, dehydration and concentration: Principle, methods, equipment	03		
Unit 6	Preservation by irradiation: Principle, methods, equipment	02		

Unit 7	7 Preservation by chemicals- antioxidants, mould inhibitors, antibodies, acidulants, Hurdle technology etc			
Unit 8	B Preservation by fermentation: Principles, methods, equipment;			
Unit 9	Non-thermal preservation processes: Principles, equipment – Pulsed electric field and pulsed intense light, ultrasound, dielectric heating, ohmic and infrared heating, high pressure processing, microwave processing, etc.;	06		
Unit 10	Quality tests and shelf-life of preserved foods.	03		

S. No.	Title of Experiment			
1	Demonstration of various perishable food items and degree of spoilage			
2	Preservation of food by high concentration of sugar			
3	Preservation of food by using salt			
4	Blanching of selected food items			
5	Preservation of food by heat treatment- pasteurization			
6	Demonstration of preserving foods under cold vs. freezing process			
7	To study IQF processing of fruits/ vegetable			
8	Drying of fruit slices pineapple slices, apple slices in cabinet drier			
9	Effect of irradiation on sprouting of potatoes and onions			
10	Preservation of food by using acidulants i.e. pickling by acid, vinegar or acetic acid			
11	Preservation of food by using chemical preservatives			
12	Preservation of bread, cake using mold inhibitors			
13	Processing of foods using fermentation technique, i.e. preparation of sauerkraut			
14	Study on ohmic heating system			
15	Study on effect of high pressure on microbe			
16	Visit to food processing industry			

Suggested Reading

Stavros Yanniotis. 2008. Solving Problems in Food Engineering. Springer Science + Business Media, NY, USA.

Gaurav Tewari and Vijay K. Juneja. 2007. Advances in Thermal and Non-Thermal Food Preservation. Blackwell Publishing, Ames, Iowa, USA.

M. Shafiur Rahman. 2007. Handbook of Food Preservation, 2nd Ed. CRC Press, Boca Raton, FL, USA.

James G. Brennan. 2006. Food Processing Handbook. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.

Marcus Karel and Darvl B. Lund. 2003. Physical Principles of Food Preservation, 2nd Ed. Marcel Dekker, Inc., NY, USA.

Peter Zeuthen and Leif Bùgh-Sùrensen. 2003. Food Preservation Techniques. CRC Press LLC, Boca Raton, FL, USA.

P. Fellows. 2000. Food Processing Technology: Principles and Practice, 2nd Ed. CRC Press, Boca Raton, FL, USA.

Norman N. Potter and Joseph H. Hotchkiss. 1995. Food Science, 5th Ed. Chapman & Hall, NY, USA.

Norman W. Desrosier and James N. Desrosier. 1977. The Technology of Food Preservation, 4th

Ed. AVI Publishing Co., Connecticut, USA.

Girdhari Lal, G.S. Siddappa and G.L. Tandon. 1959. Preservation of Fruits and Vegetables. ICAR, New Delhi.

	Course Outcomes: On completion of course students will be able to				
CO1:	CO1: Understanding the important concept of food processing				
CO2:	CO2: Understanding the Food Perishability and types of food spoilage				
CO3:	CO3: Recognize the concept of conventional food preservation techniques				
CO4:	CO4: Understanding the novel non-thermal food preservation techniques				
CO5:	CO5: Recognize the importance of food quality analysis and shelf life evaluation				

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1							
CO2							
CO3							
CO4							
CO5							

8. Engineering Mathematics-II (MATH 121)

2(2+0)

(32 Lectures + 00 Practical)

Obje	Objectives:					
1	Mathematical calculation is essential for determining ingredient proportions, adjusting serving sizes and ensuring consistent product quality.					
2	To understand the knowledge of representation of matrix and their types.					
3	To Solve the problem of Harmonic function and C-R equations.					
4	To explain the Fourier series and their types and also solve their applications.					
5	To study the higher order partial differential equations and and solve their applications.					

Units	Topics	Lectures	1
-------	--------	----------	---

	Elementary transformation and rank of a matrix, reduction to normal form, Gauss-Jordan method to find inverse of a	3				
Unit 1	matrix	5				
	Consistency and solution of linear equations					
	Eigen value and vectors, Cayley-Hamilton theorem					
	Linear and orthogonal transformations					
	Diagonalization of matrices, Bilinear, Quadratic forms					
Unit 2	Limit, continuity, derivative of function of complex variable	2				
Unit 2	Analytical function, C-R equations, conjugate function, harmonic functions	2				
	Fourier series: Infinite series and its convergence, periodic					
	function, Euler's formulae for calculating Fourier	2				
Unit 3	coefficients, Dirichlet's conditions					
	Fourier series of functions with arbitrary period	2				
	Fourier series of odd and even functions	$\frac{2}{2}$				
	Half range sine and cosine series, Harmonic analysis					
	Formation of partial differential equations	1				
	Lagrange's linear equation	2				
	Higher order linear partial differential equation with constant coefficients					
Unit 4	Solution of non-linear partial differential equation (Charpit's method)	2				
	Application of partial differential equations: One dimensional					
	wave e.q, one dimensional heat equation, two dimensional	2				
	steady state heat equation i.e. Laplace equation					
	Total	32				

B.V. Ramana. 2008. Engineering Mathematics. Tata McGraw-Hill Book Co., New Delhi.B.S. Grewal. 2004. Higher Engineering Mathematics. Khanna Publishers, Delhi.Shanti Narayan 2004. A Textbook of Matrices. S. Chand and Co. Ltd., New Delhi.

	Course Outcomes: On completion of course students will be able to				
CO1	Acquaint the knowledge about linear equations and diagonalization of matrices, inverse matrix and application of food processing.				
CO2	Take the knowledge about complex analysis.				
CO3	Gain the knowledge about Fourier series and use to solve the application of food processing.				
CO4	Understand the knowledge about partial differential equations and Fluid mechanis				

PSO1	PSO2	PSO3	PSO4

C01		
CO2		
CO3		
CO4		

NCC/NSS/Physical Education (PED 121)

1 (0+1)*

* Non-Credit Course

Obj	Objectives:			
1.	Understand the community in which they work			
2.	Understand themselves in relation to their community			
3.	Identify the needs and problems of the community and involve them in problem-solving			
4.	Develop among themselves a sense of social and civic responsibility			
5.	Utilise their knowledge in finding practical solutions to individual and community problems			
6.	Develop competence required for group-living and sharing of responsibilities			
7.	Gain skills in mobilising community participation			
8.	Acquire leadership qualities and democratic attitudes			
9.	Develop capacity to meet emergencies and natural disasters and practise national integration and social harmony			

Course Outcomes: On completion of course students will be able to			
CO1:	Improve the quality of educated manpower by fostering social responsibility		
CO2:	Raising society to a higher material and moral level by preparing students for final dedication in the service of nation		
CO3:	Introduce urban students to rural life by living in contact with the community in whose midst their institution is located		
CO4:	Making campus relevant to the needs of the community		
CO5:	Involvement in the tasks of national development		
CO6:	Better understanding and appreciation of the problems of the society		
CO7:	Encourage Community participation		

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				

CO5		
CO6		
CO7		

SEMESTER III

1. Food Biochemistry and Nutrition (FQA 231)

(32 Lectures + 16 Practicals)

Obj	Objectives:		
1	To obtain basic knowledge of role of enzymes in biochemical reactions		
2	To understand how carbohydrates, proteins and lipids are utilized for energy		
3	To obtain basic knowledge of nutrition and RDA		
4	To understand the physiological role of vitamins and minerals		
5	To understand structure and functions of nucleic acids		

Units	Topics	Lectures
	Concepts of Food and Nutrition	
	Functions of food; Basic food groups; nutrients supplied by food; Water	2
	and energy balance, water intake and losses, basal metabolism	
Unit 1	Formulation of diets, classification of balanced diet, preparation of	2
	balanced diet for various groups; Recommended dietary allowances for	
	various age groups; Malnutrition; Assessment of nutritional status; Food	
	fad and faddism; Potentially toxic substance in human food	
	Mechanism of Enzyme action	
	Introduction to enzyme and characteristics, coenzymes, kinetics and	2
Unit 2	mechanism of enzyme action	
	Derivation of Michaelis-Menten Equation, Enzyme inhibition by pH,	2
	allosteric enzymes	
Unit 3	Nucleic acids	
Unit 5	Nucleic acids, structures of various components of DNA and RNA	2
	Nutrients	
	Functions, sources, digestion, absorption, assimilation, transport of	1
Unit 4	carbohydrates	
Unit 4	Functions, sources, digestion, absorption, assimilation, transport of	1
	proteins	1
	Functions, sources, digestion, absorption, assimilation, transport of fats	
	Metabolism of Carbohydrates	
Unit 5	Introduction to carbohydrates metabolism, glycolysis, TCA cycle	2
	Electron transport chain, oxidative and substrate level phosphorylation	1
	Metabolism of Lipids	
Unit 6	Introduction to lipid metabolism, β -oxidation of long chain fatty acids,	2
	Ketosis, breakdown of phospholipids	
	Biosynthesis of fatty acids, triglycerides and phospholipids	2

	Metabolism of Proteins	
Unit 7	Introduction to protein metabolism, transamination	1
Unit /	Deamination and decarboxylation	1
	Fixation of Nitrogen, Urea Cycle	1
	Minerals	
Unit 8	Functions, sources, absorption, deficiency of macrominerals	1
Unit o	Functions, sources, absorption, deficiency of microminerals	1
	Functions, sources, absorption, deficiency of trace minerals	1
	Vitamins and Hormones	
	Functions, sources, absorption, deficiency of Vitamins A &D	1
Unit 9	Functions, sources, absorption, deficiency of Vitamins E & K	1
	Functions, sources, absorption, deficiency of water soluble vitamins	3
	Information about hormones & relation between vitamins and hormones	1

S. No.	Title of Experiment
1	Preparation of various solutions and buffers
2	Measurement of calorific value using bomb calorimeter
3	Determination of pka of acids
4	Determination of pI for casein
5	Estimation of sugars in fruits by Anthrone method
6	Estimation of protein by Lowry method
7	Estimation of amino acid using Biuret reaction
8	Separation of amino acids using paper chromatography
9	Separation of amino acids using thin layer chromatography
10	Separation of nucleic acids using electrophoresis
11	Estimation of phosphorus in malted foods
12	Estimation of iron content in malted foods
13	Determination of calcium in malted foods
14	Estimation of β -carotene using column chromatography
15	Estimation of ascorbic acid in fruit juices using dye method
16	Effects of acids and alkali on pigments

Suggested Reading

Gaile Moe, Danita Kelley, Jacqueline Berning and Carol Byrd-Bredbenner. 2013. Wardlaw's Perspectives in Nutrition: A Functional Approach. McGraw-Hill, Inc., NY, USA.

David L. Nelson and Michael M. Cox. 2012. Lehninger Principles of Biochemisry, 6th Ed. Macmillan Learning, NY, USA.

Donald Voet and Judith G. Voet. 2011. Biochemisry, 4th Ed. John Wiley and Sons, Inc., NY, USA.

Carolyn D. Berdanier, Elaine B. Feldman and Johanna Dwyer. 2008. Handbook of Nutrition and Food, 2nd Ed. CRC Press, Boca Raton, FL, USA.

Bob B. Buchanan, Wilhelm Gruissem and Russell L. Jones. 2002. Biochemistry & Molecular Biology of Plants. John Wiley and Sons, Inc., NY, USA.

Jeremy M. Berg, John L. Tymoczko, Lubert Stryer and Gregory J. Gatto, Jr. 2002. Biochemisry, 7th Ed. W.H. Freeman and Company, NY, USA.

	Course Outcomes:		
On comple	etion of course students will be able to		
CO1:	Have basic knowledge of role of enzymes in biochemical reactions		
CO2:	How energy is obtained by oxidation of different components of food		
CO3:	To obtain basic knowledge of nutrition and RDA		
CO4:	To understand the role of vitamins and minerals in various biochemical reactions		
CO5:	To understand structure and functions of nucleic acids		

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

2. Industrial Microbiology (FQA 232)

3 (2+1)

(32 Lectures + 16 Practicals)

Obj	Objectives:			
1.	To study the commercial applications of industrially important organisms in fermentations and its application in foods			
2.	To study about microorganisms used industrial process			
3.	To understand media preparation for the industrial fermentation			
4.	To study microbial growth and its determination			
5.	To study fermenter design			

Units	Topics	Lecture
Unit 1	Overview of Industrial Microbiology	
Unit I	Introduction to industrial fermentations,	02

	Range of fermentation processes,	01
	Chronological development	02
	Compartmental part of fermentation processes	01
	Industrially Important Microorganisms	
	Criteria for Selection of Industrially Important Microorganisms	01
Unit 2	Overview of strain improvement of Industrially Important	03
	Microorganisms	
	Preservation of industrially important microorganisms	01
	Fermentation Media	
Unit 3	Media selection	01
Onit 5	Medium Formulation	02
	Medium for industrial fermentation	02
	Microbial Growth-	
	Typical Growth Curve, Synchronous growth,	01
Unit 4	Batch Fermentations	01
	Continuous Fermentation	01
	Fed Batch Fermentation	
	Bioreactor Design:	
	Basic functions,	01
Unit 5	Parts of stirred tank fermenter: Aeration and agitation; agitator,	02
Onit 5	Impeller, sparger systems, baffles and other accessories	02
	Types of reactor;	01
	Problems related to scale up of Process	01
	Upstream and Down Stream Processes:	
Unit 6	Upstream processes	01
	Overview of Downstream Processing	01
	Methods of cell destruction	01
	Methods of purification of enzyme/product	02
	Concentration and Packaging	01

S. No.	Title of Experiment		
1.	To study the bacterial growth curve in batch culture		
2.	To study the thermal death characteristics of known bacterial culture		
3.	To study the thermal death characteristics of known bacterial culture		
4.	Isolation and screening of amylolytic microorganisms		
5.	Isolation and screening of protease producing microorganisms		
6.	Isolation and screening of antibiotic producing microorganisms		
7.	To carry out quantitative estimation of protease		
8.	To carry out quantitative estimation of amylase		
9.	To measurement C.O.D. of effluent		

10.	To demonstrate the fermenter operations
11	To carry out the ethanol fermentation by S. cerevisiae
12	To carry out the ethanol fermentation by S. cerevisiae
13	To carry out the ethanol fermentation by S. cerevisiae
14	To produce citric acid by A. niger
15	To produce citric acid by A. niger
16	To produce citric acid by A. niger

Nduka Okafor. 2007. Modern Industrial Microbiology and Biotechnology. Science Publishers, Enfield, New Hampshire, USA.

Dennis E. Briggs, Chris A. Boulton, Peter A, Brookes and Roger Stevens. 2004. Brewing Science and Practice. Woodhead Publishing Ltd. Cambridge, England.

G. Reed. 2004. Prescott & Dunn's Industrial Microbiology, 4th Ed. AVI Publishers, Connecticut, USA.

Peter F. Stanbury, Allan Whitakar and Stephen J. Hall. 1995. Principles of Fermentation Technology, 2nd Ed. Elsevier Science Ltd., Burlington, MA, USA.

L.E. Casida Jr. 1968. Industrial Microbiology. New Age International Publishers, New Delhi.

Course Outcomes:			
On compl	etion of course students will be able to		
CO1:	Expose to the industrial applications of fermentation process		
CO2:	Application of microorganisms for the food Processing.		
CO3:	Expose to strategies for selection of various microbes, media for the fermentation		
CO4:	Familiarization with various methods of studying growth of microorganisms		
CO5:	Familiarization with various techniques used for the product separation and purification		

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

3. Heat and Mass Transfer in Food Processing (FPE 231)

(32 Lectures + 16 Practical)

Obj	ectives:
1.	To introduce students to the fundamental principles of heat transfer mechanisms (conduction, convection, radiation) and mass transfer (diffusion, convection) relevant to food processing, emphasizing their applications in food systems.
	To enable students to apply heat and mass transfer principles to analyze, design, and optimize food processing operations such as heating, cooling, freezing, drying, and evaporation for efficient energy utilization and preservation of food quality.
	To educate students on how heat and mass transfer principles influence various unit operations in food processing, including pasteurization, sterilization, dehydration, and concentration, and how these operations affect food safety and quality.
4.	To develop students' problem-solving skills by applying heat and mass transfer principles to analyze and solve challenges related to food processing, preservation, and packaging.

Units	Topics	Lecture		
Units 1	Basic heat transfer processes, heat transfer coefficients, properties related to heat transfer, food properties measurements and errors			
Units 2	One-dimensional steady state conduction : Theory of heat conduction, Fourier's law and its derivation, Concept of electrical analogy and its application for thermal circuits, heat transfer through composite walls and insulated pipelines			
Units 3	One-dimensional steady state heat conduction with heat generation: Heat flow through slab, hollow sphere and cylinder with linear heat transfer, uniform/non-uniform heat generation, development of equations of temperature distribution with different boundary conditions			
Units 4	Steady-state heat conduction with heat dissipation to environment : Introduction to extended surfaces (fins) of uniform area of cross- section and with Equation of temperature distribution with different boundary conditions; Effectiveness and efficiency of the fins			
Units 5	Introduction to unsteady state heat conduction: System with negligible internal resistance and in various geometries; Convection: Forced and free convection, use of dimensional analysis for correlating variables affecting convection heat transfer			
Units 6	Dimensionless numbers : Concept of Nusselt number, Prandtl number, Reynolds number, Grashoff number, some important empirical relations used for determination of heat transfer coefficient; Heisler charts and calculations			
Units 7	Heat transfer to flowing fluids ; Radiation: Heat radiation, emissivity, absorptivity, transmissivity, radiation through black and grey surfaces, determination of shape factors	3		

Units 8	Heat Exchangers : General discussion, fouling factors, jacketed kettles, LMTD, parallel and counter flow heat exchangers, shell and tube and plate heat exchangers, heat exchanger design; Efficiency and NTU analysis; Application of different types of heat exchangers in dairy and food industry	4
Units 9	Mass transfer : Fick's law of diffusion, steady state diffusion of gases and liquids through solids, equimolal diffusion, isothermal evaporation of water into air, mass transfer coefficient, application in dairy and food industry.	5
		32

S. No.	Title of Experiment		
1	Heat transfer analysis during conduction and convection		
2	Determination of thermal conductivity of food products and insulators		
3	Determination of thermal properties (specific heat, thermal conductivity) of frozen foods		
4	Determination of thermal properties (specific heat, thermal conductivity) of unfrozen foods		
5	Determination of thermal diffusivity of food		
6	Determination of overall heat transfer coefficient for parallel flow heat exchanger		
7	Determination of overall heat transfer coefficient for counter flow heat exchanger		
8	Determination of overall heat transfer coefficient for plate heat exchanger		
9	Determination of overall heat transfer coefficient for shell & tube heat exchanger		
10	Determination of overall heat transfer coefficient for finned tube heat exchanger		
11	Determination of effectiveness of heat exchangers		
12	Determination of overall heat transfer coefficient of falling film and forced		
	circulation evaporator		
13	Heat transfer during agitation and mixing		
14	Study of water distillation plant		
15	Demonstration of continuous distillation apparatus in operation		
16	Study on temperature distribution & heat transfer in HTST pasteurizer		
17	Determination of mass transfer coefficient in foods		
18	Determination of glass transition temperature of food sample		
19	To study mass transfer during leaching process		

Suggested Reading

Eduardo Cao. 2010. Heat Transfer in Process Engineering. The McGraw-Hill Companies, Inc., New York, USA.

J.P. Holman. 2010. Heat Transfer, 10th Ed. McGraw-Hill Book Co., Boston, USA.

Don W. Green and Robert H. Perry. 2008. Perry's Chemical Engineers' Handbook. McGraw-Hill Co., Inc., NY, USA.

R. K. Rajput. 2008. Heat and Mass Transfer. S. Chand and Co., New Delhi

John H. Lienhard IV and John H. Lienhard V. 2008. A Heat Transfer Textbook. Phlogiston Press, Cambridge, MA, USA.

Warren L. McCabe, Julian Smith, Peter Harriott. 2004. Unit Operations of Chemical Engineering, 7th Ed. McGraw-Hill, Inc., NY, USA.

Christie John Geankoplis. 2003. Transport Processes and Separation Process Principles, 4th Ed. Prentice-Hall, NY, USA.

J, M. Coulson, J. F. Richardson, J. R. Backhurst and J. H. Harker. 1999. Coulson & Richardson's Chemical Engineering, Vol. 1, Fluid Flow, Heat Transfer and Mass Transfer, 6th Ed. Butterworth–Heinemann, Oxford, UK.

M. Necati Özişik. 1993. Heat Conduction, 2nd Ed. John Wiley & Sons, NY, USA.

Robert E. Treybal. 1980. Mass Transfer Operations, 3rd Ed. McGraw-Hill Book Company, Auckland, USA.

Course Outcomes:

On completion of course students will be able to

CO1:	Students will acquire a comprehensive understanding of heat and mass transfer mechanisms and their relevance to food processing, enabling them to interpret and analyse thermal and mass-related phenomena in food systems.				
CO2:	Students will be capable of evaluating and optimizing unit operations in food processing by applying heat and mass transfer principles, ensuring the effectiveness of processes while maintaining food safety and quality standards.				
CO3:	With knowledge of heat and mass transfer, students will understand the impact of packaging materials and design on food preservation, extending shelf-life, and maintaining product quality.				
CO4:	Through practical application and analysis of heat and mass transfer principles in food processing, students will enhance their critical thinking and problem-solving abilities, enabling them to address complex challenges in food technology systematically.				
CO5:	Students will develop the ability to communicate effectively about heat and mass transfer phenomena in food processing, allowing them to articulate findings and recommendations clearly in reports, presentations, and discussions within the food industry.				

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

4. Food Refrigeration and Cold Chain (FPE 232)

3 (2+1)

(32 Lectures +	16 Practical)
----------------	---------------

Obj	Objectives:	
1.	To familiarize students with various methods of producing low temperature, its working principles.	
2.	To provide basic knowledge and working of vapor compression and vapour absorption refrigeration cycle, air refrigeration system.	
3.	Knowledge various commonly used refrigerants and its properties	
4.	To provide knowledge of various heat load calculation and sizing of refrigeration system.	

Units	Topics			
Units 1	Principles of refrigeration: Definition, background with second law of thermodynamics,, unit of refrigerating capacity, coefficient of performance	1		
Units 2	Production of low temperatures: Expansion of a liquid with flashing, reversible/ irreversible adiabatic expansion of a gas/ real gas, thermoelectric cooling, adiabatic demagnetization.			
Units 3	Air refrigerators working on reverse Carnot cycle: Carnot cycle, reversed Carnot cycle, selection of operating temperatures; Air refrigerators working on Bell Coleman cycle: Reversed Brayton or Joule or Bell Coleman cycle, analysis of gas cycle, polytropic and multistage compression.	2		
Units 4	Vapour refrigeration: Vapor as a refrigerant in reversed Carnot cycle with p-V and T-s diagrams, limitations of reversed Carnot cycle; Vapour compression system: Modifications in reverse Carnot cycle with vapour as a refrigerant (dry Vs wet compression, throttling Vs isentropic expansion), representation of vapor compression cycle on pressure- enthalpy diagram, super heating, sub cooling; effect of suction vapour, super heat and liquid sub cooling on actual vapour compression cycle; Vapour-absorption refrigeration system: Process, calculations, maximum coefficient of performance of a heat operated refrigerating machine; water/lithium bromide & ammonia/water absorption cooling.	4		
Units 5	Common refrigerants and their properties: classification, nomenclature, desirable properties of refrigerants- physical, chemical, safety, thermodynamic and economical; azeotrope refrigerants.	3		
Units 6	Components of vapour compression refrigeration system, evaporator, compressor, condenser and expansion valve;	3		

Units 7	Ice manufacture: principles and systems of ice production, basic types of ice, ice makers, Treatment of water for making ice, brines, freezing tanks, ice cans, air agitation, quality of ice;	
Units 8	Units 8 Cold storage: Cold store, design of cold storage for different categories of food resources, size and shape, construction and material, insulation, vapour barriers, floors, frost-heave, interior finish and fitting, evaporators, automated cold stores, security of operations.	
Units 9	Refrigerated transport: Handling and distribution, cold chain,	
Units 10	Low temperature Refrigeration: cryogenic fluid and fluid properties; liquefaction; application in food	
Units 11	Air-conditioning: Meaning, factors affecting comfort air- conditioning, classification, sensible heat factor, industrial air- conditioning, problems on sensible heat factor; Winter/summer/year round air-conditioning, unitary air-conditioning systems, central air- conditioning, physiological principles in air-conditioning, air distribution and duct design methods; design of complete air- conditioning systems; humidifiers and dehumidifiers;	
Units 12	Cooling/Refrigeration load calculations: Load sources, product cooling, conducted heat, convected heat, internal heat sources, heat of respiration, peak load, miscellaneous loads; etc.	3
		32

S. No.	Title of Experiment	
1	Study of basic refrigeration and air conditioning system and calculation of COP	
2	Study of heat pump based on VCR system and calculation of COP	
3	Use of psychrometric charts in refrigeration and cold chain management	
4	Study of various types of compressors, condensers, expansion valves and evaporative coils used in refrigeration systems	
5	Study of refrigerants and charging in compressor	
6	Study of direct and indirect contact freezing equipment for foods	
7	Study of spray freezing process for foods	
8	Study of refrigeration system and estimation of refrigeration load for a cold storage	
9	Study of refrigeration system and estimation of refrigeration load for a chocolate and ice-cream plant	
10	Study of refrigeration system and estimation of refrigeration load for a dairy plant	
11	Study of Ice Bank Tank system for plant	
12	Study of IQF plant	
13	Study of refrigerated van	
14	Study of deep freezing and thawing of foods	
15	Study of refrigerated display of foods and estimation of cooling load	

16	Study of refrigeration system and estimation of refrigeration load for meat and
	poultry products
17	Study of refrigeration system of a dairy plant operation
18	Study of absorption type solar refrigeration system
19	Study on repair and maintenance of refrigeration and air-conditioning systems

William C. Whitman, William M. Johnson, John A. Tomczyk and Eugene Silberstein. 2009. Refrigeration & Air Conditioning Technology, 6th Ed. Delmar, Cengage Learning, NY, USA.

C.P. Arora. 2000. Refrigeration and Air Conditioning, 2nd Ed. Tata McGraw-Hill Publishing Co. Ltd., New Delhi.

W.F. Stoecker and J.W. Jones.1982.Refrigeration and Air Conditioning, 2nd Ed. McGraw-Hill Book Co., New York, USA.

Ashrae Handbook, 2006: Refrigeration.

Course Outcomes: On completion of course students will be able to		
CO1:	Students will acquire understanding of refrigeration and their relevance to food storage	
CO2:	Students will be able to understand the working principle of various method to produce low temperature and application refrigeration principles food processing.	
CO3:	Students will gain the ability to assess refrigeration system performance and freezing equipment, selection of refrigerants	
CO4:	With knowledge of refrigeration, students will be capable of optimizing minimizing energy consumption, and maximizing efficiency while maintaining or enhancing food life.	
CO5:	Through the application of refrigeration principles to food technology, students will enhance their critical thinking abilities, enabling them to address challenges in cold chain, cold storage.	

	PSO1	PSO2	PSO3	PSO4
C01				
CO2				
CO3				
CO4				

5. Fundamentals of Food Engineering (FPE 233)

Obj	Objectives:	
1.	To familiarize the students with engineering properties of food materials	
2.	To understand the basics of drying and dehydration and different types of dryers	
3.	To get acquainted with the importance of size reduction and different types of size reduction machineries	
4.	To get the understandings about basic operations in food engineering like mixing and different methods of separations	

(32 Lectures +	16 Practical)
----------------	---------------

Units	Topics	Lecture
Units 1	Engineering properties of food materials: physical, thermal,	3
Units 1	aerodynamic, mechanical, optical and electromagnetic properties	5
	Drying and dehydration: Basic drying theory, heat and mass transfer	
	in drying, drying rate curves, calculation of drying times, dryer	
Units 2	efficiencies; classification and selection of dryers; tray, vacuum,	8
Onits 2	osmotic, fluidized bed, pneumatic, rotary, tunnel, trough, bin, belt,	0
	microwave, IR, heat pump and freeze dryers; dryers for liquid: Drum	
	or roller dryer, spray dryer and foam-mat dryers	
	Size reduction: Benefits, classification, determination and designation	
	of the fineness of ground material, sieve/screen analysis, principle and	
	mechanisms of comminution of food, Rittinger's, Kick's and Bond's	
Units 3	equations, work index, energy utilization; Size reduction equipment:	5
	Principal types, crushers (jaw crushers, gyratory, smooth roll), hammer	
	mills and impactors, attrition mills, buhr mill, tumbling mills, tumbling	
	mills, ultra fine grinders, fluid jet pulverizer, colloid mill, cutting	
	machines (slicing, dicing, shredding, pulping)	
	Mixing : theory of solids mixing, criteria of mixer effectiveness and	
	mixing indices, rate of mixing, theory of liquid mixing, power	
Unit 4	requirement for liquids mixing; Mixing equipment: Mixers for low- or	4
	medium-viscosity liquids (paddle agitators, impeller agitators, powder-	
	liquid contacting devices, other mixers), mixers for high viscosity	
	liquids and pastes, mixers for dry powders and particulate solids Mechanical Separations: Theory, centrifugation, liquid-liquid	
Units 5	centrifugation, liquid-solid centrifugation, clarifiers, desludging and	4
Onits 5	decanting machine	т
	Filtration : Theory of filtration, rate of filtration, pressure drop during	
	filtration, applications, constant-rate filtration and constant-pressure	
Units 6	filtration, derivation of equation; Filtration equipment; plate and frame	4
	filter press, rotary filters, centrifugal filters and air filters, filter aids	
	Membrane separation: General considerations, materials for	
Units 7	membrane construction, ultra-filtration, microfiltration, concentration,	4
	polarization, processing variables, membrane fouling, applications of	

ultra-filtration in food processing, reverse osmosis, mode of operation, and applications; Membrane separation methods, demineralization by electro-dialysis, gel filtration, ion exchange, per-evaporation and osmotic dehydration	
	32

S. No.	Title of Experiment
1	Determination of the shape and size of food materials
2	Determination of the particle density/true density and porosity of solid grains and powdery material
3	Determination of terminal velocity of grain sample
4	Determination of fineness modulus and uniformity index
5	Operation of tray dryer and drying process calculations
6	Operation of vacuum dryer and drying process calculations
7	Study of spray dryer and drying process calculations
8	Study of microwave dryer operation
9	Study of osmosis in fruit
10	Determination of solid gain and moisture loss during osmosis
11	Power requirement in size reduction of grain using Rittinger's law, Kick's law and Bond's law
12	Performance evaluation of hammer mill
13	Performance evaluation of attrition mill
14	Determination of mixing index of a feed mixer
15	Determination of cleaning effectiveness / efficiency
16	Study of centrifugal separator
17	Study of reverse osmosis process
18	Study of ultra-filtration/membrane separation process

Suggested Reading

R.L. Earle. 2004. Unit Operations in Food Processing. The New Zealand Institute of Food Science & Technology, Nz.

Warren L. McCabe, Julian Smith, Peter Harriott. 2004. Unit Operations of Chemical Engineering, 7th Ed. McGraw-Hill, Inc., NY, USA.

Christie John Geankoplis. 2003. Transport Processes and Separation Process Principles (Includes Unit Operations), 4th Ed. Prentice-Hall, NY, USA.

George D. Saravacos and Athanasios E. Kostaropoulos. 2002. Handbook of Food Processing Equipment. Springer Science+Business Media, New York, USA.

J. F. Richardson, J. H. Harker and J. R. Backhurst. 2002. Coulson & Richardson's Chemical Engineering, Vol. 2, Particle Technology and Separation Processes, 5th Ed. Butterworth–Heinemann, Oxford, UK.

Mohsenin, Nuri N. 1986. Physical Properties of Plant and Animal Materials : Structure, Physical Characteristics and Mechanical properties, 2nd Ed. Gordon and Breach Science Publishers, New York.

Mohsenin, Nuri N. 1984. Electromagnetic Radiation Properties of Foods and Agricultural Products. Gordon and Breach Science Publishers, New York.

Mohsenin, Nuri N. 1980. Thermal Properties of Foods and Agricultural Materials. Gordon and Breach Science Publishers, New York.

Course Outcomes:		
On complete	on of course students will be able to	
CO1:	Students will gain an understanding of various engineering properties of the food material which can be used to design and develop the equipments for its necessary processing.	
CO2:	It will provide the students a basic understanding of dehydration and drying as it is used in the food industry and in various sectors of the agriculture industry and also the usage of different types of dryers as per the different food materials.	
CO3:	Students will know the benefits of size reduction and usage of different types of size reduction machineries.	
CO4:	As mixing is crucial in the process industry, the students will learn serving diverse applications to create customized products by blending multiple components into a uniform mixture. In separation, they will learn to separate, isolate, and purify a particular component from a mixture, as these are essential in the food manufacturing process.	

	PSO1	PSO2	PSO3	PSO4
C01				
CO2				
CO3				
CO4				

6. Processing Technology of Liquid Milk (FPT 231)

2 (1+1)

(16 Lectures + 16 Practicals)

Objectives:		
1.	To understand the basic properties of milk	
2.	To understand the history of dairy development in India	
3.	3. To understand the milk collection and processing systems and its technology.	
4.	To get familiarize with quality parameters of milk	

Units	Topics	Lectures
Unit 1	Historical development of dairy in India; Production and utilization of milk; Composition and properties of milk;	01
Unit 2	Liquid milk collection, preservation, processing, packaging and storage - standardized milk, skim milk, sterilized milk, reconstituted/rehydrated milk, recombined milk, flavored milk.	04
Unit 3	Effect of thermal treatment on milk constituents	01
Unit 4	Fermented milk, acidophilous milk, etc.; Effect of thermal treatment on milk constituents; Fermented milk products: Processing, manufacture, storage and packaging of acidophilus milk, cultured buttermilk and other fermented milk; Bio-chemical changes occurring during manufacture of fermented milks; Factors affecting these changes and effects of these changes on the quality of finished products	03
Unit 5	Cream: definition, classification, manufacture of different types of cream, processing of cream;	01
Unit 6	Adulterations in milk and its detection; Quality defects in milk - causes and prevention	01
Unit 7	Liquid milk collection, processing, packaging and storage systems and equipment - bulk milk coolers, milk chilling units, milk reception equipment, milk tanks/silos, pasteurizers, sterilizers, centrifuges, clarifiers, filtration units, homogenizers, packaging and filling machines, CIP units, etc.;	03
Unit 8	Hygienic design concepts, sanitary pipes and fittings, corrosion process and their control.	02

S. No.	Title of Experiment
1	Sampling of milk and milk products
2	Platform tests of raw milk (clot on boiling (COB) test, alcohol test
3	Determination of physical properties of milk
4	Determination of proximate composition and biochemical properties of milk
5	Determination of microbiological properties of milk
6	Detection of adulterants in milk
7	Identification and demonstration of liquid milk processing equipment, pipes and
	fittings
8	Preparing standardized milk as per requirement
9	Separation of fat from milk
10	Pasteurization and homogenization of milk
11	Packaging of liquid milk
12	Preparation of sterilized flavored milk
13	Preparation of reconstituted milk/rehydrated milk
14	Preparation of cream
15	Preparation of buttermilk

16	Preparation of curd and yogurt
17	Preparation of Lassi
18	Visit to chilling center and dairy plant

A. Kanekanian. 2014. Milk and Dairy Products as Functional Foods. John Wiley & Sons, Ltd., UK.

Adnan Y. Tamime. 2009. Milk Processing and Quality Management. Blackwell Publishing Ltd., UK.

Pieter Walstra, Jan T.M. Wouters, Tom J. Geurts. 2006. Dairy Science and Technology, 2nd Ed. CRC Press, Boca Raton, FL, USA.

Sukumar De. 2005. Outlines of Dairy Technology. Oxford University Press, New Delhi.

H.G. Kessler. 1981. Food Engineering and Dairy Technology. Verlag A. Kessler, Fraising (F.R. Germany).

Y.H. Hui. 1993. Dairy Science and Technology Handbook, Vol. I, II and III. Wiley-VCH, USA.

Course Outcomes:		
On completion	n of course students will be able to	
CO1:	CO1: Apply basic properties of milk for product manufacturing.	
CO2:	Demonstrate the processing and quality analysis of milk.	
CO3:	Operate the dairy processing equipment	
CO4:	Able to manufacture fermented dairy products	
CO5:	Able to start a dairy based start-up.	

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

7. Processing Technology of Cereal (FPT 232)

3 (2+1)

(32 Lectures + 16 Practicals)

Objectives:		
1.	To understand the structure of the cereal grain, and the components of commercial flour.	
2.	2. To familiarize with cereal grain production and quality categorization systems	
3.	3. Learn milling technology of rice, wheat, corn and barley	

4. Get knowledge about breakfast cereals and their processing

Units	Topics	Lectures
	Present status and future prospects of cereals and millets	01
Unit 1	Morphology, physico-chemical properties of cereals, major and minor	02
	millets Chemical composition and nutritive value	01
	Paddy processing and rice milling: Conventional milling, modern milling	01
Unit 2	Milling operations, milling machines, milling efficiency; Quality	02
	characteristics influencing final milled product	
	Parboiling; Rice bran stabilization and its methods	02
Unit 3	Ageing of rice; Enrichment of rice – methods of enrichment; Rice	02
	fortification	
	Wheat milling: Break system, purification system and reduction	02
Unit 4	system; extraction rate and its effect on flour composition;	0.1
	Quality characteristics of flour and their suitability for baking	01
Unit 5	Corn milling: Dry and wet milling of corn, starch and gluten separation,	02
	milling fractions and modified starches	
	Barley: Malting and milling	02
	Oat/Rye: Processing, milling	02
Unit 6	Sorghum: Milling, malting, pearling	02
	Millets (Pearl millets, finger millets): Processing of millets for food	02
	uses	
Unit 7	Secondary and tertiary products processing of cereals and millets	02
	By-products processing of cereals and millets	02
Unit 8	Processing of infant foods from cereals and millets	02
Unit 9	Breakfast cereal foods: Flaked, puffed, expanded, extruded and shredded	02

List of Practicals

S. No.	Title of Experiment
1	Morphological characteristics of cereals
2	Physical properties of cereals
3	Chemical properties of cereals
4	Parboiling of paddy
5	Effect of various factor on parboiling of paddy
6	Determination of cooking quality of rice
7	Milling of rice and quantitative analysis of various fractions
8	Conditioning and milling of wheat
9	Quantitative analysis of various fractions of milled wheat
10	Production of sorghum flakes
11	Production of popcorns
12	Production of flaked rice, puffed rice, noodles
13	Preparation of sorghum malt
14	Determination of gelatinization temperature using DSC and other methods
15	Processing of value added products from millets

	16	Visit to Cereal processing unit
--	----	---------------------------------

Chakraverty, A. and Singh, R. P. 2014. Post Harvest Technology and Food Process Engineering. CRC Press, Boca Raton, FL, USA.

Khan, K. and Shewry, P. R. 2009. Wheat: Chemistry and Technology, 4th Ed., AACC International, Inc., St. Paul, MN, USA.

Wrigley, C. 2004. Encyclopedia of Grain Science. Academic Press, London, UK.

Champagne, E. T. 2004. Rice: Chemistry and Technology, 3rd Ed., AACC International, Inc., St. Paul, MN, USA.

Chakraverty, A., Mujumdar, A.S., Vijaya Raghavan G.S. and Ramaswamy, H. S. 2003. Handbook of Post Harvest Technology: Cereals, Fruits, Vegetables, Tea, and Spices. Marcel Dekker, Inc., NY, USA.

White, P. J. and Johnson. L. Lawrence A. 2003. Corn: Chemistry and Technology, 2nd Ed., AACC International, Inc., St. Paul, MN, USA.

David A.V. Dendy and Bogdan J. Dobraszczyk. 2001. Cereal and Cereal Products: Technology and Chemistry. Springer-Verlag, US.

Kent, N.L. and Evers, A.D. 1994. Kent's Technology of Cereals: An Introduction for Students of Food Science and Agriculture, 4th Ed. Elsevier Science Ltd., Oxford, UK.

Matz, Samuel A. 1991. The Chemistry and Technology of Cereals as Food and Feed, 2nd Ed. Springer Science + Business Media, NY, USA.

Araullo, E.V., D.B. De Padna and Graham. 1976. Rice Post Harvest Technology. IDRC, Canada.

Course Outc	Course Outcomes:			
On completio	On completion of course students will be able to			
CO1:	Explain the structure of the cereal grain, and the components of commercial flour			
CO2:	Demonstrate the cereal grain production and quality categorization systems			
CO3:	Understand the milling processing of different cereals			
CO4:	Can manufacture various breakfast cereal products			
CO5:	Understand the millets and their processing			

	PSO1	PSO2	PSO3	PSO4
C01				
CO2				
CO3				
CO4				
CO5				

8. Statistical Methods and Numerical Analysis (STAT 231) 2 (1+1)

(16 Lectures + 16 Practical)

Objectives:		
1	Understand design of experiments	
2	Learn different statistical test	

Units	Topics	No. of Lectures
Unit 1	Statistical inference and testing of hypothesis – Z test, t test and F test	4
Unit 2	Chi-square test and its uses – testing the goodness of fit and test of independence (contingency table)	2
Unit 3	Correlation and regression analysis	3
Unit 4	Basic principles of experimental design Analysis of variance (ANOVA) – one way and two way classification. Basic designs- Layout and analysis of completely randomized design (CRD) with equal and unequal number of observations, randomized block design (RBD), Latin square design (LSD)	5
Unit 5	Response surface methodology	2

List of Practicals

S. No.	Title of Experiment
1-2	Problems on Z test – One and two sample test
3-4	Problems on t test - One and two sample (dependent and independent) test
5	Problems on F test
6-7	Problems on chi square test
8	Problems on correlation and regression
9-10	Problems on CRD
11-12	Problems on RBD
13-14	Problems on LSD
15-16	Problems on response surface methodology

Suggested Reading

Erwin Kreyszig, 2006. Advanced Engineering Mathematics, 9th Ed. John Wiley & Sons, New York, USA.

B.S. Grewal. 2004. Higher Engineering Mathematics. Khanna Publishers, Delhi.

P.P. Gupta and C.C. Malik. 1993. Calculus of Finite Differences and Numerical Analysis. Krishna Prakash Mandor, Meerut.

Course Outcomes:

On completion of course students will be able to

C01:	Ability to apply Z-test, t-test, and F-test to determine the reliability and significance of food processing experiments
CO2:	Use chi-square tests to assess the goodness of fit and test for independence in sensory evaluations, quality control, or market research in food products
CO3:	Design and analyse completely randomized designs (CRD) to evaluate the effects of various treatments on food properties
CO4	Employ randomized block design (RBD) and Latin square design (LSD) to control variability in food processing experiments
CO5	Utilize response surface methodology for optimizing food processing parameters to achieve desired product characteristics

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1							
CO2							
CO3							
CO4							
CO5							

NCC/NSS/Physical Education * Non-Credit Course (PED 231)

1 (0+1)*

Obj	Objectives:		
1.	Understand the community in which they work		
2.	Understand themselves in relation to their community		
3.	Identify the needs and problems of the community and involve them in problem-solving		
4.	Develop among themselves a sense of social and civic responsibility		
5.	Utilise their knowledge in finding practical solutions to individual and community problems		
6.	Develop competence required for group-living and sharing of responsibilities		
7.	Gain skills in mobilising community participation		
8.	Acquire leadership qualities and democratic attitudes		
9.	Develop capacity to meet emergencies and natural disasters and practise national integration and social harmony		

Course Outcomes: On completion of course students will be able to			
CO1:	Improve the quality of educated manpower by fostering social responsibility		

CO2:	Raising society to a higher material and moral level by preparing students for final dedication in the service of nation
CO3:	Introduce urban students to rural life by living in contact with the community in whose midst their institution is located
CO4:	Making campus relevant to the needs of the community
CO5:	Involvement in the tasks of national development
CO6:	Better understanding and appreciation of the problems of the society
CO7:	Encourage Community participation

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				
CO6				
CO7				

SEMESTER IV

1. Food Biotechnology (FQA 241)

(32 Lectures + 16 Practicals)

Obj	Objectives:		
1	To understand chemistry and synthesis of biomolecules		
2	To learn techniques for the observation of biomolecules		
3	To learn advance techniques in the field of biotechnology through theoretical and practical exposure		
4	To understand ethical issues and guidelines of GMO foods		
5	To understand chemistry and synthesis of biomolecules		

Units	Topics	Lecture				
	Introduction to genetic material: Chemical nature, properties, and functions of the genetic material.	01				
	Overview of bacterial DNA replication: Origin of replication, Enzymes and proteins required for DNA replication and overview of replication					
Unit 1	Bacterial transcription: Types of RNA and overview of bacterial transcription.	02				
	Bacterial translation: Genetic code and overview of bacterial translation.	02				
	Mutation and DNA repair: Types of mutation, mechanisms of repair	02				
	of damaged DNA (photo reactivation, excision repair, recombination repair, SOS repair and mismatch repair).					
	Overview of genetic recombination in bacteria					
	Bacterial transformation: Griffith experiment, Avery, MacLeod &	02				
Unit 2	McCarty experiment and Mechanism of bacterial transformation. Bacterial Conjugation: Lederberg & Tatum experiment, Bernard & Davie (111) take experiment). Effect on and experiment, and the storied					
	Devis ('U' tube experiment), F factor and mechanism of bacterial conjugation.	02				
	Bacterial Transduction: Structure of bacteriophage, replication cycle of bacteriophage and Mechanism of bacterial transduction.	02				
Unit 3	Regulation of gene expression in prokaryotes: Fine structure of gene (Operator, Promoter, Structural and regulatory gene sequence) and Mechanism of bacterial gene expression regulation - Lac operon.	03				
	Introduction to recombinant DNA technology					
	DNA modifying enzymes: Restriction enzymes and other modifying	01				
	enzymes	01				
Unit 4	Cloning vectors: Introduction, plasmid and other vectors	02				
	Steps of gene cloning: Isolation and purification of insert DNA, selection	04				
	and isolation of vector DNA, construction of recombined DNA, introduction of recombined DNA into host cell, identification and					
	selection of cells containing cloned genes					

Unit 5	Immobilization: Introduction, types and application Biosensors: Introduction, classification and application in food industries	
Unit 6	GMO food: Introduction, Ethical issues and guidelines	02

S. No.	Title of Experiment
1	Isolation and analysis of chromosomal/genomic DNA from bacteria
2	Isolation and analysis of chromosomal/genomic DNA from bacteria
3	Isolation and analysis of chromosomal/genomic DNA from plant
4	Isolation and analysis of chromosomal/genomic DNA from plant
5	Detection of food borne pathogen by conventional microbiological method
6	Introduction to ELISA
7	Introduction to Southern blot
8	To carry out fermentation of amylase
9	To carry out fermentation of amylase
10	Demonstration of Enzyme immobilization
11	Demonstration of PCR
12	Demonstration of PCR
13	Pathogen detection by using real time PCR
14	Demonstration for detection of GMO foods
15	Demonstration for gene cloning
16	Demonstration for gene cloning

Suggested Reading

B.D. Singh. 2014. Biotechnology - Expanding Horizons. Kalyani Publishers, New Delhi. Meenakshi Paul. 2007. Biotechnology and Food Processing Mechanics. Gene-Tech Books, New Delhi.

James D. Watson. 2013. Molecular Biology of the Gene, 7th Ed. Benjamin Cummings, San Francisco, USA.

Oliver Brandenberg, Zephaniah Dhlamini, Alessandra Sensi, Kakoli Ghosh and Andrea Sonnino 2011. Introduction to Molecular Biology and Genetic Engineering. FAO, Rome, Italy. S.B. Primrose and R.M. Twyman. 2006. Principles of Gene Manipulation and Genomics, 7th Ed. Blackwell Publishing, Victoria, Australia.

Ashok Agarwal and Pradeep Parihar. 2005. Industrial Microbiology: Fundamentals and Applications. Agrobios India, Jodhpur.

Course Outcomes:

On completion of course students will be able to

C01	Understand chemistry and synthesis of biomolecules		
CO2	CO2 Develop skill for the observation of biomolecules		
CO3 Understand advance techniques in the field of biotechnology through theory practical exposure			
CO4 Learn ethical issues and guidelines of GMO foods			

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				

2. Food Plant Sanitation (FQA 242)

2(1+1)

(16 Lectures + 16 Practicals)

(10 Lectures + 10 Practicals)					
Obj	Objectives:				
1.	To learn the significance of sanitation in food industry for food safety.				
2.	To learn about the sources of microbial, chemical and physical contaminants to foods and food products and its control practices.				
3.	To understand the role of Good personal hygiene practices, good manufacturing practices, cleaning, sanitation in food industry.				
4.	To gain knowledge about the various national and internationals food laws, regulations.				
5.	To understand the applications of HACCP in food safety and security.				

Units	Topics	Lecture		
	Sanitation and food industry: Sanitation, sanitation laws, regulations,	1		
	and guidelines, establishment of sanitary Practices.	1		
Unit 1	Foodborne bioterrorism: Potential risks and protection measures for			
	bioterrorism			
	The Relationship of microorganisms to sanitation: Microbial growth	1		
	in relation to spoilage and food borne out breaks and its control measures	1		
	The Relationship of allergens to sanitation: Food allergens and its	1		
Unit 2	control measures			
	Food contamination sources: Sources of contamination, contamination	1		
	of foods, protection against contamination	1		

	Personal hygiene and sanitary food handling: Personal hygiene, employee hygiene, sanitary food handling, role of employee supervision, employee responsibility	1
	Cleaning compounds and sanitizers: Classification, selection of cleaning compounds and sanitizers, handling and storage, precautions	3
Unit 3	Pest and Rodent Control: Insect infestation, cockroaches, insect destruction, rodents, birds, use of pesticides, integrated pest management	1
	Sanitary design and construction for food processing: Site selection, site preparation, building construction considerations, processing and design considerations, pest control design	2
Unit 4	Waste product handling: solid waste and liquid waste management	2
	Role of HACCP in sanitation: Good manufacturing practices, current good manufacturing practices; Standard operating procedures, good laboratory practices	2

S. No.	Title of Experiment
01	Estimation of BOD (Biological Oxygen Demand)
02	Estimation of COD (Chemical Oxygen Demand);
03	Determination of hardness of water
04	Good Manufacturing Practices (GMPs) and personal hygiene
05	Sewage treatment: Primary, secondary, tertiary and quaternary;
06	Lab demonstration on state of water
07	Study of CIP plant
08	Aerobic and anaerobic sludge treatment
09	Isolation and identification of Actinomycetes;
10	Enrichment and isolation of cellulose degrading bacteria
11	Biodegradation of phenol compounds;
12	Bacteriological examination of water: Coliform MPN test;
13	Sampling of airborne microorganisms
14	Sampling of surfaces - equipment and physical plant
15	Aerosol sampling and measurement guidelines
16	Visit to Food Processing Plant/ Restaurants/ Food Mall etc.

Suggested Reading

Michael M. Cramer. 2013. Food Plant Sanitation: Design, Maintenance, and Good Manufacturing Practices. CRC Press, Boca Raton, FL, USA. Ralph Mitchell and Ji-Dong Gu. 2010. Environmental Microbiology, 2nd Ed. John Wiley & Sons, Inc., Hoboken, New Jersey, USA.

Norman G. Marriott and Robert B. Gravani. 2006. Principles of Food Sanitation, 5th Ed. Springer Science & Business Media, Inc., NY, USA.

I.L. Pepper and C.P. Gerba. 2005. Environmental Microbiology: Laboratory Manual, 2nd Ed. Elsevier Academic Press, Amsterdam.

Y. H. Hui, Bernard L. Bruinsma, J. Richard Gorham, Wai-Kit Nip, Phillip S. Tong and Phil Ventresca. 2003. Food Plant Sanitation. Marcel Dekker, Inc., NY, USA.

	Course Outcomes: On completion of course students will be able to			
CO1.	Understand the significance of sanitation in food industry for food safety.			
CO2.	Understand the sources of microbial, chemical and physical contaminants to foods and food products and practices that are required to be followed for control of the contaminants to ensure food safety.			
CO3.	Understand the role of Good Hygienic Practices (GHP), Good Manufacturing Practices (GMP), cleaning, sanitation in food industry.			
CO4.	Gain knowledge about the various national and internationals food laws, regulations.			
CO5.	Understand HACCP principles and its application in food industry for food safety and security.			

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

3. Food Plant Utilities & Services (FPE 241)

3 (2+1)

(32 Lectures + 16 Practical)

Objectives:		
1.	To familiarize students with different form of energy, its basic, types, forms, terms and measuring instruments used in food plant utilities.	
2.	To provide basic knowledge and working of various utilities; electric system, electric motor, compressor system, HV AC and refrigeration system, pump and pumping system, DG sets,	
3.	To acquaint with various fuels, its handling and properties.	
4.	To provide knowledge of various boilers, steam utilization, regeneration and other services used in food plant.	

Units	Topics	Lecture
Unit 1	Introduction	
	Classification of Various Utilities and Services in food Plant/ industry. Commercial energy Pricing	2
Unit 2	Electrical System	
	Introduction to electric power supply systems, electrical billing, electrical load management & maximum demand control, power factor improvement & benefits, transformers, system distribution losses, harmonics, trouble shooting of electrical power system	2
Unit 3	Electrical motors	
	Types, losses in Introduction motor, motor efficiency, factors affecting motor performers, performance, rewinding and motor replacement issues, energy saving opportunities with energy efficient motors	1
Unit 4	Compressed air system	
	Requirement, types, compressor efficiency, efficient compressor operation, compressed air system components, capacity assessment, leakage test, factors affecting the performance & efficiency	3
Unit 5	HV AC & Refrigeration system	
	Requirement, vapor compression refrigeration cycle, refrigerants, coefficient of performance, capacity, factors affecting refrigeration & air conditioning system performance & saving opportunities. Vapor absorption refrigeration system: Working principle, types & comparison with VCR system, saving potential	2
Unit 6	Fans and blowers	
	Requirement, types, performance evaluation, efficient system operation, flow control strategies and energy conservation opportunities	2
Unit 7	Pumps and pumping systems	
	Requirement, types, performance evaluation, efficient system operation, flow control strategies and energy conservation opportunities	2
Unit 8	DG set system	
	Requirement, introduction, factors affecting selection	1
Unit 9	Fuels and combustion	
	Introduction to fuels; properties offuel oil, coal & gas; storage; handling & preparation of fuels; principles of combustion, combustion of oil, coal & gas; draft system	2
Unit 10	Boilers	
	Boiler specification, Indian boiler regulation, system components, types, combustion in boilers, performance terms, analysis of losses, feed water treatment, blow down, energy conservation opportunities	2
Unit 11	Steam system	
	Properties of steam, assessment of steam distribution losses, steam leakage, steam trapping, condensate and flash steam recovery system, opportunities for energy savings	2
Unit 12	Waste heat recovery	

	Classification, advantages and application, commercially viable waste heat recovery devices, saving potential	3
Unit 13	Other utilities & services	
	Lighting, CIP system, waste water/drainage, water treatment, dust removal, fire protection and maintenance system	4

S. No.	Title of Experiment			
1	Study on energy basic, types, forms, terms and measuring instruments used in food plant utilities.			
2	Study on plant's electrical power supply system, billing and load estimation.			
3	Motors and variable speed drives specification, selection, performance terms & definitions.			
4	Study on compressed air system components and performance terms & definitions.			
5	Study of refrigeration & HVAC system components, performance terms & definitions and load estimation of a plant.			
6	Study of fans and blowers, types, specification, performance terms & definitions.			
7	Pumps types, specification, selection, performance terms & definitions.			
8	Study on plant lighting system and their components.			
9	Study on DG system their specification and selection.			
10	Study on combustion of oil, gas & coal.			
11	Study on fuel substitution.			
12	Study on boiler performance terms and assessment.			
13	Study on cost of steam			
14	Study on waste heat recovery devices [Recuperates, Regenerators, Heat wheel, Heat pipes, Economizers, Heat exchanger (Shell and tube, PHE, run around coil exchanger, direct contact HX), Waste heat recovery boilers, Heat pumps and Thermo compressor].			
15	Study on CIP' system components.			
16	Study on fire control operations and use of fire extinguisher.			
17	Study of water treatment plant.			
18	Study of effluent treatment plant.			

Text books

Energy Efficiency and Management in Food Processing Facilities, by Lijun Wang. Published by CRC Press, 2008

Energy-saving Techniques for the Food Industry by M. E. Casper. Published by Noyes Data Corp., 1977

Chilton's Food Engineering. Published by Chilton Co., 1979

Reference book

A Survey of Water Use in the Food Industry by W. E. Whitman, S. D. Holdsworth. Published by British Food Manufacturing Industries Research Association.

Course Outcomes:			
On completion	On completion of course students will be able to		
CO1:	Students will acquire understanding of plant utilities		
CO2:	Students will be able to understand the importance of various plant services		

CO3:	Students will gain knowledge of fuel system and its judicious use	
CO4: Students will also be able to handle effluent and water treatment plants		

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				

4. Unit Operations in Food Processing (FPT 241)3 (2+1)

(32 Lectures + 16 Practicals)

Objectives:

U	
1.	To learn basic principles of evaporation and design and working of evaporators
2.	To learn basic principles of freezing, design and working of freezers
3.	To learn expression and extraction, processes, types of equipment and design.
4.	To understand crystallization, dissolution and distillation, their theory and principles, applications in food industry and equipment for crystallization
	To gain knowledge on principles of baking, roasting, frying and puffing, their equipment and their working
6.	To learn blanching and pasteurization sterilization, UHT sterilization, aseptic processing and thermal processing, principles and equipment and their work

Units	Topics	Lectures
Unit 1	Evaporation: Principles of evaporation, mass and energy balance, factors affecting rate of evaporation, thermodynamics of evaporation (phase change, boiling point elevation, Dühring plot; Heat and mass transfer in evaporator, factors influencing the overall heat transfer coefficient, influence of feed liquor properties on evaporation Evaporation equipment: Natural circulation evaporators, horizontal/vertical short tube, natural circulation with external calandria, long tube, forced circulation; Evaporator ancillary plant, design of evaporation systems, single effect, multiple effect evaporators, feeding methods of multiple effect evaporation systems, feed preheating, vapour recompression systems	02 02
	Fouling of evaporators and heat exchangers; Recompression heat and mass recovery and vacuum creating devices	02
Unit 2	Food freezing: Introduction, freezing point curve for food and water, freezing points of common food materials, Principles of food freezing,	02

		1
	Freezing time calculation by using Plank's equation; Freezing	
	systems; Direct contact systems, air blast immersion; Changes in	
	foods; Frozen food properties; freezing time, factors influencing	02
	freezing time, freezing/thawing time	
	Freeze concentration: Principles, process, methods; Frozen food	
	storage: Quality changes in foods during frozen storage; Freeze	
	drying: Heat mass transfer during freeze drying, equipment and	
	practice.	
	Expression and Extraction: liquid-liquid extraction processes, types	01
	of equipment and design for liquid-liquid extraction, continuous	
Unit 3	multistage counter current extraction	
	Leaching: process, preparation of solids, rate of leaching, types of	01
	equipment, equilibrium relations	
IIm:4 4	Crystallization and dissolution: Theory and principles, kinetics,	02
Unit 4	applications in food industry, equipment for crystallization	
	Distillation: Principles, vapour-liquid equilibrium, continuous flow	02
Unit 5	distillation, batch/differential distillation, fractional distillation,	
	steam distillation, distillation of wines and spirits	
II	Baking: Principles, baked foods, baking equipment; Roasting:	02
Unit 6	Principles of roasting, roasting equipment;	
	Frying: theory and principles, shallow or contact frying and deep fat	02
Unit 7	frying, heat and mass transfer in frying, frying equipment; Puffing:	
	Puffing methods, puffing equipment	
	Blanching: Principles and equipment; Pasteurization: Purpose,	02
IL 40	microorganisms and their reaction to temperature and other	
Unit 8	influences, Methods of heating, design and mode of operation of	02
	heating equipment, vat, tubular heat exchanger, plate heat exchanger	
	Sterilization: Principles, process time, T-evaluation, design of batch	02
	and continuous sterilization, different methods and equipment	
	UHT sterilization, in the package sterilization, temperature and	02
	pressure patterns, equipment for sterilizing goods in the package	
Unit 9	Aseptic processing: principles, analysis of thermal resilience,	02
	duration mathematics of conduction heating	
	Thermal processing and microbial death curves; Homogenization,	02
	Emulsification.	

S. No.	Title of Experiment		
1	Study of working principle open pan and vacuum evaporator and estimation of		
	heat/mass balance during concentration of liquid foods		
2	Study of single effect evaporator and estimation of heat/mass balance during		
	concentration of liquid foods		
3	Study of multiple effect evaporator and estimation of heat/mass balance during		
	concentration of liquid foods		

4	Effect of sample particle size and time on solvent extraction process
5	Effect of temperature on crystallization rate of sugar
6	Study of freezers/ Design problems on freezers
7	To study freezing of foods by different methods IQF freezing
8	Determination of freezing time of a food material
9	To study simple distillation process and determine the rate of distillation
10	To study the effect of leavening agent/ time- temperature on baking process
11	To study the process of roasting/ To study the effect of time- temperature
	combination on roasting
12	Determination of oil uptake by the food product during frying
13	Study on qualitative changes in the fried food product
10	To study the puffing/ popping characteristics of selected grains
11	To determine the efficacy of a blanching process
12	To determine time-temperature combination for a blanching process
13	To determine the efficacy of a sterilization process
14	Numerical problem on thermo bacteriology (D, Z and F)
15	Determination of F value for a product in can/ retortable pouch
16	Study of sterilizer /blancher/ pasteurizers/ fryers/ homogenizers/ irradiators
17	Visit sugar processing industry

Suggested Reading

R. Paul Singh and Dennis R. Heldman. 2014. Introduction to Food Engineering, 5th Ed. Elsevier, Amsterdam, The Netherlands.

R.L. Earle. 2004. Unit Operations in Food Processing. The New Zealand Institute of Food Science & Technology, Nz.

Warren L. McCabe, Julian Smith, Peter Harriott. 2004. Unit Operations of Chemical Engineering, 7th Ed. McGraw-Hill, Inc., NY, USA.

Albert Ibarz and Gustavo V. Barbosa-Cánovas. 2003. Unit Operations in Food Engineering. CRC Press, Boca Raton, FL, USA.

Christie John Geankoplis. 2003. Transport Processes and Separation Process Principles (Includes Unit Operations), 4th Ed. Prentice-Hall, NY, USA.

George D. Saravacos and Athanasios E. Kostaropoulos. 2002. Handbook of Food Processing Equipment. Springer Science+Business Media, New York, USA.

J. F. Richardson, J. H. Harker and J. R. Backhurst. 2002. Coulson & Richardson's Chemical Engineering, Vol. 2, Particle Technology and Separation Processes, 5th Ed. Butterworth–Heinemann, Oxford, UK.

P. Fellows. 2000. Food Processing Technology: Principles and Practice, 2nd Ed. CRC Press, Boca Raton, FL, USA.

R. K. Sinnott. 1999. Chemical Engineering, Vol. 6, Chemical Engineering Design, 3rd Ed. Butterworth-Heinemann, Oxford, UK.

Kenneth J. Valentas, Enrique Rotstein and R. Paul Singh. 1997. Handbook of Food Engineering Practice. CRC Press, Boca Raton, FL, USA.

Robert E. Treybal. 1980. Mass Transfer Operations, 3rd Ed. McGraw-Hill Book Company, Auckland, USA.

Course C	Course Outcomes:	
On comp	letion of course students will be able to	
CO1:	Expose to the industrial applications of evaporation, freezing and distillation methods in process industry	
CO2:	Exposure for the different equipment's used for expression, extraction frying and puffing.	
CO3:	Apply the knowledge of unit operations	
CO4:	Familiarization with various unit operations involved in food industry.	
CO5:	Familiarization with various roasting, baking, blanching, sterilization, UHT processing, and pasteurization methods.	

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

5. Processing Technology of Dairy Products (FPT 242)

3 (2+1)

(32 Lectures + 16 Practicals)

Obj	Objectives:	
1.	1. To get familiarize with milk products	
2.	Learn the processing of dairy products viz. cream, butter, ghee, ice-cream, cheese etc.	
3.	3. To get familiarize with milk powder processing and substitutes	
4.	Gain knowledge of traditional dairy products and their processing	

Units	Topics	Lectures
	Cream: Basic aspect, Classification, manufacture of different types of	02
	cream, processing of cream; Classification of dairy products;	
Unit 1	Butter: Definition, composition; processing and production steps,	04
	overrun, butter making machines, quality testing of table butter, butter-	
	defects, causes and their prevention, packaging and storage	

	Butter oil and ghee: Definition, composition, processing, equipment, quality tests;	04
Unit 2	Paneer and Cheese: Definition, composition, types, processing steps,	
	process flow diagram, equipment, quality defects, causes and	04
	prevention, packaging and storage.	04
	Ice cream and frozen desserts: Definition, composition, types,	02
Unit 3		04
	causes and prevention, packaging and storage.	
	Condensed and Dried milk: Definition, composition, role of milk	03
	constituents in condensed milk, manufacture of condensed milk, types	
TI:4 /	of standards for dried milk	
Unit 4	Manufacture of SMP and WMP using roller and spray drying,	04
	instantization, recent developments in drying, quality testing, defects,	
	causes and prevention, packaging and storage	
	Traditional Indian Dairy Products: Definitions, compositions,	03
Unit 5	processing, packaging, storage, equipment and quality testing;	
	By- products of dairy industry and their utilization.	02

S. No.	Title of Experiment
1	Preparation of butter/ table butter
2	Preparation of ghee
3	Preparation of paneer
4	Preparation of Chhana
5	Preparation of selected type of cheese
6	Preparation of ice-cream and selected frozen desserts
7	Preparation of condensed milk
8	Preparation of spray dried milk powder
9	Preparation of selected Indian dairy products
10	Preparation of Mawa/khoa
11	Preparation of mawa/khoa based products
12	Preparation of Shrikhand
13	Preparation of whey drink
14	Preparation of halwa/ kheer etc.
15	Determination of selected quality parameters of selected dairy products
16	Visit to dairy plant

Suggested Reading

A. Kanekanian. 2014. Milk and Dairy Products as Functional Foods. John Wiley & Sons, Ltd., UK.

Adnan Y. Tamime. 2009. Milk Processing and Quality Management. Blackwell Publishing Ltd., UK.

Pieter Walstra, Jan T.M. Wouters, Tom J. Geurts. 2006. Dairy Science and Technology, 2nd Ed. CRC Press, Boca Raton, FL, USA.

Sukumar De. 2005. Outlines of Dairy Technology. Oxford University Press, New Delhi.

H.G. Kessler. 1981. Food Engineering and Dairy Technology. Verlag A. Kessler, Fraising (F.R. Germany).

Y.H. Hui. 1993. Dairy Science and Technology Handbook, Vol. I, II and III. Wiley-VCH, USA. Aneja, R. P.; Mathur, B. N.; Chandan, R. C.; Banerjee, A. K., 2002, Technology of Indian Milk Products: Handbook of Procees Technology Modernization for Professionals Entrepreneurs and Scientists, Dairy India Yearbook

	Course Outcomes: On completion of course students will be able to		
CO1:	CO1: Demonstrate the processing and quality analysis of milk products.		
CO2:	Operate the dairy processing plants		
CO3:	Able to manufacture various dairy products like ice cream, cheese, butter, milk powder etc.		
CO4:	Able to maintain the quality and nutrition of dairy products		
CO5:	Able to start a dairy based start-up.		

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

6. Processing Technology of Legumes and Oilseeds (FPT 243) 3 (2+1)

(32 Lectures + 16 Practicals)

Obje	Objectives:	
1.	To familiarize with the basics of legumes and oilseeds	
2.	To get acquainted with the Pulse milling and its processing	
3.	To understand the milling of oilseeds and its operations	
4.	To learn by-product utilization of oil milling and pulse milling and its value addition	

Units	Topics	Lectures
Unit 1	Present status and future prospects of legumes and oilseeds; Morphology of legumes and oilseeds; Classification and types of legumes and oilseeds Chemical composition, nutritional value and anti-nutritional compounds in legumes and oilseeds; Methods of removal of anti- nutritional compounds	02 02
Unit 2	Pulse milling: Home scale, cottage scale and modern milling methods, machines, milling quality, milling efficiency	03

	Factors affecting milling quality and quantity; Problems in dhal milling industry	03
	Nutritional changes during soaking and sprouting of pulses; Cooking	03
Unit 3	quality of dhal, methods, factors affecting cooking of dhal; Quick cooking dhal, instant dhal; Soybean milk processing and value addition; Fermented products of legumes	03
	Oil seed milling: Ghanis, hydraulic presses, expellers, solvent	02
Unit 4	extraction methods, machines,	
	Milling quality, milling efficiency, factors affecting milling quality	01
	and quantity; Problems in oil milling industry;	
	Desolventization	01
Unit 5	Refining of oils: Degumming, neutralization, bleaching, filtration,	03
Unit 5	deodorization, winterization and their principles and process controls;	
	Hydrogenation of oils; New technologies in oilseed processing;	03
	Utilization of oil seed meals for different food uses: High protein	03
Unit 6	products like protein concentrates and isolates;	
	By-products of pulse and oil milling and their value addition.	03

S. No.	Title of Experiment
1	Determination of physical properties of legumes and oil seeds
2	Determination of proximate composition of selected pulses and oilseeds
3	Determination of nutritional quality of selected pulses and oilseeds
4	Study of mini dhal mill
5	Study of mini oil mill
6	Preconditioning of pulses before milling
7	Preconditioning of oilseeds before milling
8	Removal of anti-nutritional compounds from selected pulses and oilseeds
9	Laboratory milling of selected pulses and its quality evaluation
10	Laboratory milling of selected oilseeds and its quality evaluation
11	Laboratory refining of selected oils
12	Laboratory hydrogenation of selected oils
13	Study of cooking quality of dhal
14	Processing of composite legume mix and preparation of value added products
15	Processing of soy milk and value added products
16	Visit to commercial dhal mills and oil mills

Suggested Reading

Guriqbal Singh, Harbhajan Singh Sekhon, Jaspinder Singh Kolar and Masood Ali. 2005. Pulses. Agrotech Publishing Academy, Udaipur.

A. Chakraverty. 2008. Post Harvest Technology of Cereals, Pulses and Oilseeds, 3rd Ed. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi.

Frank D. Gunstone. 2008. Oils and Fats in the Food Industry. John Wiley and Sons, Ltd., West Sussex, UK.

Fereidoon Shahidi. 2005. Bailey's Industrial Oil & Fat Products, 6th Ed., Vols. 1 to 6. John Wiley and Sons, Inc. Hoboken, New Jersey, USA.

Amalendu Chakraverty, Arun S. Mujumdar, G.S. Vijaya Raghavan and Hosahalli S. Ramaswamy. 2003. Handbook of Post Harvest Technology: Cereals, Fruits, Vegetables, Tea, and Spices. Marcel Dekker, Inc., NY, USA.

K.M. Sahay and K.K. Singh. 2001. Unit Operations of Agricultural Processing, 2nd Ed. Vikas Publishing House Pvt. Ltd., Noida.

Course Outco On completion	omes: n of course students will be able to	
CO1 :	CO1 : Have an idea of the basics of legumes and oilseeds.	
CO2 :	CO2: Gain an understanding of Pulse milling and its processing.	
CO3 :	CO3 : Learning the milling of oilseeds and its operations.	
CO4 :	CO4 : To be able to utilize oil seed meals for different food uses.	

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				

7. Processing of Spices and Plantation Crops (FPT 244)

3 (2+1)

(32 Lectures + 16 Practicals)

(52 Lectures + 101 facticals)			
Obj	Objectives:		
1.	To study the production and processing of major and minor spices		
2.	To study the production and processing of planation crops including tea, coffee, cocoa		
3.	To study processing of vanilla and annatto processing		
4.	To study different equipment's and method used for spice oil, oleoresin extraction techniques		
5.	To study standard specification of spices and functional packaging of spices and its by products		

Units	Topics	Lectures
Unit 1	Production and processing scenario of spice, flavour and plantation crops and its scope	01
Unit 2	Major spices: Post harvest technology, composition Processed products of spices: Ginger, chilli, turmeric, onion and garlic, pepper, cardamom.	02 02

Unit 3	Equipment for cryogenic grinding	01
Unit 4	marjoram.	
	Rosemary, saffron, sage; Savory, thyme, ajowan; Asafetida, curry leaves	02
Unit 5	Post-harvest technology for Tea, coffee, cocoa	
Unit 6	Vanilla and annatto processing	
Unit 7	Post-harvest technology and processing of areca nut, cashew nut, oil palm, coconut	
Unit 8	Flavours of minor spices; Flavour of major spices	
Unit 9	Spice oil and oleoresins: Extraction techniques; Super critical fluid extraction of spices	
Unit 10	Standard specification of spices; Standards like ESA, ASTA, FSSAI and maintenance of quality by fumigation, CAS and ETO sterilization	
Unit 11	Functional packaging of spices and spice products By-products of plantation crops and spices	02 02

S. No.	Title of Experiment
1	Chemical analysis of select spices: Moisture, valuable oil,
2	Physical analysis of select spices: specific gravity, refractive index, acid value
3	Identification and characterization of flavouring compounds of spices
4	Valuable oil determination
5	Extraction of oil from clove/ pepper
6	Extraction of oil from cardamom/ chilli
7	Extraction of oleoresins: Turmeric/ ginger, pepper, clove
8	Extraction of oleoresins: pepper/ clove
9	Peperine estimation in pepper oleoresin
10	Steam distillation of spices
11	Determination of curcumin content in turmeric
12	Study of standard specification of spices
13	Packaging study of spices
14	Preparation of curry powder
15	Extraction of active ingredients by TLC, HPLC and GC
16	Visit to spice industry

Suggested Reading

K.G. Shanmugavelu. Spices and Plantation Crops. Oxford & IBH Publishing Co., New Delhi J.W. Purseglave, E.G. Brown, C.L. Green and Robins. Spices, Vol. I and II. SRJ Academic Press, New Delhi.

J.S. Pruthi. 2001. Spices and Condiments – Major Spices of India. National Book Trust, New Delhi.

J.S. Pruthi. 2001. Spices and Condiments – Minor Spices of India. National Book Trust, New Delhi.

Kenji Hirasa and Mitsuo Takemasa. 1998. Spice Science and Technology. Marcel Dekker, NY, USA.

H. Panda. Handbook on Spices and Condiments (Cultivation, Processing and Extraction). Asia Pacific Business Press Inc., New Delhi.

S. Gupta. Handbook of Spices and Packaging with Formulae. Engineers India Research Institute, New Delhi.

Course Ou	utcomes:	
On comple	etion of course students will be able to	
CO1 :	Knowledge of production and processing of major and minor spices	
CO2 :	Knowledge of production and processing of plantation crops.	
CO3 :	Familiarization with various equipment's used for processing and methods of extraction of spice oil and oleoresins from spices	
CO4 :	Familiarization with various packaging methods and materials used for packaging of spices	
CO5 :	Knowledge of various standard specification of spices and by-products of spices	

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1							
CO2							
CO3							
CO4							
CO5							

8. Business Management and Economics (FBM 241) 2 (2+0)

(32 Lectures)

Obj	Objectives:		
1.	To familiarize the students with basic concept, principles and functions of management		
2.	To develop an understanding of management concepts, theories and their application		
3.	To familiarize the students with basic concept, principles and theories of economics		
4.	To develop an understanding of economic concepts, theories and their application		

Units	Topics	
Unit 1	Definitions, management principles, scientific principles, administrative principles;	1
	Maslow's Hierarchy of needs theory	1

	Functions of management: Planning, organizing, staffing, directing, controlling;	2
Unit 2	Organizational structures, principles of organization;	1
	Types of organization: Formal and informal, line, line and staff, matrix, hybrid	2
	Introduction to economics: Definitions, nature, scope, difference between microeconomics and macroeconomics;	
Unit 3	Theory of demand and supply, elasticity of demand, price and income elasticity;	3
	Markets: Types of markets and their characteristics	2
	National income: GDP, GNP, NNP, disposable personal income, per capita income, inflation;	2
Unit 4	Theory of production: Production function, factors of production.	2
	Law of variable proportions and law of returns to scale	2
Unit 5	Cost: Short run and long run cost, fixed cost, variable cost, total cost, average cost, marginal cost, opportunity cost;	2
	Break even analysis	2
	Finance management: Definition, scope, objective;	1
Unit 6	Different systems of accounting: Financial accounting, cost accounting, management accounting	3
Unit 7	Human resource management: Definitions, objectives of manpower planning, process, sources of recruitment, process of selection;	2
	Corporate social responsibility: Importance, business ethics	2

Suggested Reading

L.M. Prasad. 2001. Principles and Practices of Management, 9th Ed. S. Chand & Sons, New Delhi.

Koontz Harold. Principles of Management. Tata McGraw-Hill Education Private Limited, New Delhi.

P.C. Thomas. Managerial Economics, 9th Ed. Kalyani Publishers.

K.K. Dewett and M.H. Navalur. Modern Economic Theory. S. Chand & Sons, New Delhi.

P. Subba Rao. Human Resource Management. Himalaya Publications.

S.P. Jain. Financial Accounting. Kalyani Publications, Ludhiana.

Course Outcomes:		
In completion of course students will be able to		
CO1: Conceptualize different aspects of general management		
CO2: Apply the application of principles of management in different organizatio	ns	
CO3 : Exhibit managerial skills such as decision making, leadership, coordination	n, time	
management etc.		
CO4: Conceptualize different aspects of economics		
CO5: Enhance employability		

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

NCC/NSS/Physical Education * Non-Credit Course

PED 241

1 (0+1)*

and the community in which they work and themselves in relation to their community the needs and problems of the community and involve them in problem-solving among themselves a sense of social and civic responsibility heir knowledge in finding practical solutions to individual and community problems
the needs and problems of the community and involve them in problem-solving among themselves a sense of social and civic responsibility
among themselves a sense of social and civic responsibility
heir knowledge in finding practical solutions to individual and community problems
competence required for group-living and sharing of responsibilities
lls in mobilising community participation
leadership qualities and democratic attitudes
capacity to meet emergencies and natural disasters and practise national integration al harmony

	Course Outcomes:		
On comp	On completion of course students will be able to		
	Improve the quality of educated manpower by fostering social responsibility		
	Raising society to a higher material and moral level by preparing students for final dedication in the service of nation		
CO3 :	Introduce urban students to rural life by living in contact with the community in whose midst their institution is located		
CO4 :	Making campus relevant to the needs of the community		
CO5 :	Involvement in the tasks of national development		
CO6 :	Better understanding and appreciation of the problems of the society		
CO7 :	Encourage Community participation		

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				
CO6				
CO7				

SEMESTER V

1. Instrumental Techniques in Food Analysis (FQA 351)

3 (1+2)

(32 Lectures + 16 Practicals)

	(32 Lectures + 16 Practicals)					
Obje	Objectives:					
1.	To study the importance of food analysis					
2.	To familiarization the students with various instruments for food analysis					
3.	Explain the theoretical principles underpinning the instrumental techniques and their applications					
	Assess the appropriateness of the instrumental methods for the analysis of samples in various formats and from complex matrices					
5.	Acquire practical analytical skills and employ a variety of instrumental techniques for the analysis of samples in various formats and from various matrices					
6.	Analyze and present experimental results and draw sound conclusions based on experimental evidence					

Units	Topics	Lecture
Unit 1	Concepts of food analysis; Rules and regulations of food analysis	1
Unit 2	Principles and methodology involved in analysis of foods: Rheological	2
Onit 2	analysis, textural profile analysis of foods	2
Unit 3	Methods of analysis: Proximate constituents: Total fat, crude fiber,	1
Onit 5	protein, moisture, minerals analysis; adulterations	1
	Principles and methodology involved in analytical techniques:	
	spectroscopy, ultraviolet visible, infrared spectroscopy	1
Unit 4	atomic absorption and emission, florescence	1
	mass spectroscopy	1
	Food compositional analysis and applications in the food industry	1
	Chromatography: Principle of chromatography, classifications,	1
	(Adsorption, column, partition, gel-filtration, affinity, ion-exchange,	
Unit 5	size-exclusion method)	
	gas-liquid, high performance liquid chromatography;	1
	Ion chromatography and others	1
Unit 6	Separation techniques: Dialysis, electrophoresis, sedimentation, ultra-	2
Onito	filtration, ultracentrifugation, iso-electric focusing,	2
Unit 7	Chemically sensitive semiconductor devices: Solid-state sensors for pH,	2
Unit /	acidity, amperometric, potentiometric and; Acoustic sensors,	2
	Rapid microbiological methods: Overview, Conductance/impedance	
Unit 8	techniques for microbial assay; chemosensors, biosensors,	2
	immunosensors	

S. No.	Title of Experiment
1	Sampling plan; Sample collection and preparation for analysis
2	Quality evaluation of raw materials: meat products
3	Quality evaluation of raw materials: Fruits products
4	Quality evaluation of raw materials: vegetables products
5	Quality evaluation of raw materials: cereals products
6	Quality evaluation of raw materials: dairy products
7	Quality evaluation of raw materials: poultry products
8	Analysis of wheat flour
9	Quality evaluation of food products for color and taste of marketed products (sweet)
10	Quality evaluation of food products for color and taste of marketed products (carbonated drinks)
11	Quality evaluation of food products for color and taste of marketed products (Processed food)
12	Quality evaluation of food products for color and taste of marketed products (Chili powder)
13	Estimation of phytic acid using spectrophotometer
14	Separation of amino acids by two-dimensional paper chromatography
15	Analysis of heavy metals using atomic absorption spectrophotometer (marcury)
16	Analysis of heavy metals using atomic absorption spectrophotometer (lead)
17	Analysis of heavy metals using atomic absorption spectrophotometer (arsenic)
18	Analysis of heavy metals using atomic absorption spectrophotometer (tin)
19	Identification of organic acids by paper electrophoresis
20	Identification of organic acids by paper electrophoresis
21	Identification of organic acids by paper electrophoresis
22	Estimation of vitamins (A) using HPLC
23	Estimation of vitamins (thiamine) using HPLC
24	Estimation of vitamins (riboflavin) using HPLC
25	Estimation of vitamins (nicotinamide) using HPLC
26	Estimation of lycopene using HPLC
27	Estimation of betacarotein using HPLC
28	Estimation of vitamins A using HPLC
29	Analysis of foods for drug residues in milk
30	Analysis of foods for drug residues in milk product
31	Analysis of foods for pesticide residues in fruit
32	Analysis of foods for pesticide residues in vegetable
33	Analysis of foods for pesticide residues in spices
34	Spectrophotometric method of total chlorophyll (A & B)
35	Gel-electrophoresis for analytic techniques; Quantitative determination of sugars and fatty acid profile by GLE

|--|

Suggested Reading

S. Suzanne Nieisen. 2010. Food Analysis Laboratory Manual, 2nd Ed. Springer, NY, USA. Semih Ötles. 2009. Handbook of Food Analysis Instruments. CRC Press, Boca Raton, FL, USA. Da-Wen Sun. 2008. Modern Techniques for Food Authentication. Elsevier Inc., Burlington, MA, USA.

S. Suzanne Nieisen. 2003. Food Analysis, 3rd Ed. Kluwer Academic, New York, USA.

Course Outcomes:

On completion of course students will be able to

CO1: Expose to the rules and regulations of food analysis

CO2: Familiarization with various techniques used for the product separation and purification

CO3: Expose to various sample preparation

CO4: Expose to various equipment and their working for those analysis

CO5: Learn the various instrumental methods for various food analysis

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1							
CO2							
CO3							
CO4							
CO5							

2. Food Storage Engineering (FPE 351)

3 (2+1)

(32 Lectures + 16 Practical)

Obj	Objectives:			
1.	To establish the knowledge about various storage systems and its effect on food.			
2.	To familiarize the students with types of damages and storage of grains.			
	To familiarize with the grain management, storage of perishables and design of storage structures.			

Units	Topics	Lecture
Units 1	Introduction	4

	Importance of scientific storage systems, post-harvest physiology of semi-perishables and perishables, climacteric and non-climacteric fruits, respiration, ripening, changes during ripening, ethylene bio- synthesis	
Units 2	Damages Direct damages, indirect damages, causes of spoilage in storage (moisture, temperature, humidity, respiration loss, heat of respiration, sprouting), destructive agents (rodents, birds, insects, etc.), sources of infestation and control	4
Units 3	Storage structures Traditional storage structures, improved storage structures, modern storage structures, godown layout, staking pattern and rodent proof godown design; Farm silos: Horizontal silos, tower silos, pit silos, trench silos, size and capacity of silos	3
Units 4	Storage of grains Respiration of grains, moisture and temperature changes in stored grains; conditioning of environment inside storage through ventilation	3
Units 5	Aeration and stored grain management Purposes of aeration, aeration theory, aeration system design, aeration system operation	3
Units 6	Storage pests and control Damage due to storage insects and pests, its control, seed coating, fumigations, etc.; Damage caused by rodents and its control	3
Units 7	Storage of perishables Cold storage, controlled and modified atmospheric storage, hypobaric storage, evaporative cooling storage, conditions for storage of perishable products, control of temperature and relative humidity inside storage	6
Units 8	Design of storage structures Functional and structural design of grain storage structures, pressure theories, pressure distribution in the bin, grain storage loads, pressure and capacities, warehouse and silos, BIS specifications, functional, structural and thermal design of cold stores.	6

S. No.	Title of Experiment
1	Visits to traditional storage structures
2	Layout design, sizing, capacity and drawing of traditional storage structures
3	Measurement of respiration of fruits/grains in the laboratory
4	Study on fumigation
5	Visits to FCI godowns
6	Design of grain godowns for particular capacity and commodity
7	Drawing and layout of grain godown for particular commodity and capacity
8	Visits to cold storage
9	Design of cold storage for particular capacity and commodity

10	Drawing and layout of cold storage for particular commodity and capacity
11	Visits to CA storage
12	Design of CA storage for particular capacity and commodity
13	Drawing and layout of CA storage for particular commodity and capacity
14	Visits to evaporative cooling system for storage
15	Storage study in the MAP

Suggested Reading

P.H. Pandey. 2014. Principles and Practices of Agricultural Structures and Environmental Control. Kalyani Publishers, Ludhiana.

Myer Kutz. 2007. Handbook of Farm, Dairy, and Food Machinery. William Andrew, Inc., Norwich, NY, USA.

A.M. Michael and T.P. Ojha. 2004. Principal of Agricultural Engineering, Vol. I. Jain Brothers, New Delhi.

L.W. Newbaver and H.B. Walker. 2003. Farm Buildings Design. Prentice-Hall Inc., New Jersey, USA.

Jayas D.S., White N.D.G., Muir, W.E. 1994. Stored Grain Ecosystems. Marcel Dekker, New York. J. Whitaker. 2002. Agricultural Buildings and Structures. Reston Publishing Home, Reston, Virgenia, USA.

G. Boumans. 1985. Grain Handling and Storage. Elsevier Science Publishers, Amsterdam, The Netherlands.

C.W. Hall. 1980. Drying and Storage of Agricultural Crops. The AVI Publishing Company, Inc., Westport, Connecticut, USA.

Donald B. Brooker, F.W. Bakker-Arkema, Carl W. Hall. 1974. Drying and Storage of Grains and Oilseeds. The AVI Publishing Company, Inc., Westport, Connecticut, USA.

Course Outcomes: On completion of course students will be able to		
CO1: Have an idea of the storage systems best suited to agricultural commodity.		
CO2: Gain an understanding of various damages during storage and storage of grains.		
CO3: To be able to select and utilize the suitable grain management, storage of perish and design of storage structures.		

	PSO1	PSO2	PSO3	PSO4
C01				
CO2				
CO3				

3. Food Process Equipment Design (FPE 352)

	(52 Lectures + 10 Fractical)
Obj	ectives:
1.	To introduce students the various engineering materials used for fabrication of food processing equipment's, codes and standards of material.
2.	To educate students on designing procedure and steps involved
3.	To teach students how to design various machines used in food processing industries
4.	To develop students' design ability skills by solving problems

Units	Topics	Lecture
Units 1	Materials and properties: Materials for fabrication, mechanical properties, ductility, hardness, corrosion, protective coatings, corrosion prevention linings equipment, choice of materials, material codes	3
Units 2	Design considerations: Stresses created due to static and dynamic loads, combined stresses, design stresses and theories of failure, safety factor, temperature effects, radiation effects, effects of fabrication method, economic considerations	3
Units 3	Design of pressure and storage vessels: Operating conditions, design conditions and stress; Design of shell and its component, stresses from local load and thermal gradient, mountings and accessories	2
Units 4	Design of heat exchangers: Design of shell and tube heat exchanger, plate heat exchanger, scraped surface heat exchanger, sterilizer and retort	2
Units 5	Design of evaporators and crystallizers: Design of single effect and multiple effect evaporators and its components; Design of rising film and falling film evaporators and feeding arrangements for evaporators; Design of crystalliser and entrainment separator	3
Units 6	Design of agitators and separators: Design of agitators and baffles; Design of agitation system components and drive for agitation	3
Units 7	Design of centrifuge separator; Design of equipment components, design of shafts, pulleys, bearings, belts, springs, drives, speed reduction systems	3
Units 8	Design of freezing equipment: Design of ice-ream freezers and refrigerated display system	3
Units 9	Design of dryers: Design of tray dryer, tunnel dryer, fluidized dryer, spray dryer, vacuum dryer, freeze dryer and microwave dryer	3
Units 10	Design of extruders: Cold and hot extruder design, design of screw and barrel, design of twin screw extruder	3

(32 Lectures + 16 Practical)

3 (2+1)

Units 11	Design of fermenters: Design of fermenter vessel, design problems	2
Units 12	Hazards and safety considerations: Hazards in process industries, analysis of hazards, safety measures, safety measures in equipment design, pressure relief devices.	2

S. No.	Title of Experiment
1	To perform the tension test on metal specimen (M.S., C.I.)
2	To observe the behavior of materials under load
3	To calculate the value of E, ultimate stress, permissible stress, percentage elongation etc and fracture points of
4	Design problems on applications of work and energy
5	Design problems on applications of linear and angular momentum
6	Study on shear force and bending moment diagrams and its applications
7	Design of pressure vessel
8	Design of shell and tube heat exchangers and plate heat exchanger
9	Design of sterilizers and retort
10	Design of single and multiple effect evaporators
11	Design of rising film and falling film evaporator
12	Design of crystallizer
13	Design of dryers
14	Design of extruders
15	Design of fermenters
16	Design of drive systems
17	Determination/assessment of fabrication cost of processing equipment

Suggested Reading

R. Paul Singh and Dennis R. Heldman. 2014. Introduction to Food Engineering, 5th Ed. Elsevier, Amsterdam, The Netherlands.

Albert Ibarz and Gustavo V. Barbosa-Cánovas. 2003. Unit Operations in Food Engineering. CRC Press, Boca Raton, FL, USA.

George D. Saravacos and Athanasios E. Kostaropoulos. 2002. Handbook of Food Processing Equipment. Springer Science+Business Media, New York, USA.

R. K. Sinnott. 1999. Chemical Engineering, Vol. 6, Chemical Engineering Design, 3rd Ed. Butterworth-Heinemann, Oxford, UK.

Kenneth J. Valentas, Enrique Rotstein and R. Paul Singh. 1997. Handbook of Food Engineering Practice. CRC Press, Boca Raton, FL, USA.

Peter F. Stanbury, Allan Whitakar and Stephen J. Hall. 1995. Principles of Fermentation Technology, 2nd Ed. Elsevier Science Ltd., Burlington, MA, USA.

J.F. Richarson and D.G. Peacock. 1994. Coulson & Richardsons's Chemical Engineering, Vol. 3, Chemical &Biochemical Reactors & Process Control, 3rd Ed. Elsevier Butterworth-Heinemann, Amsterdam, The Netherlands.

James R. Couper, W. Roy Penney, James R. Fair and Stanley M. Walas 2012 Chemical Process Equipment: Selection and Design. Elsevier Inc Mahajani, V. V. and Umarji, S. B., Process equipment design, Macmillan. Bhattacharyya, B. C., Introduction to Chemical Equipment design, CBS Publishers and Distributors.

Geankoplis C. J. Transport processes and unit operations, Prentice-Hall

	Course Outcomes: On completion of course students will be able to		
CO1:	Students will acquire understanding of various materials and its properties		
CO2:	Students will be able to understand the static and dynamic stresses during vessel operation		
	Students will gain the ability to design food machines/equipment's		
CO4:	With knowledge of material, design procedure students will be able to think for industry need of modern equipment's/machines		

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				
CO6				

4. Deign and formulation of foods (FPT 351)

3 (2+1)

(32 Lectures +	16 I	Practicals)
----------------	------	-------------

Ob	jectives:
1.	To familiarize the students about nutritional value, design and formulation of foods
2.	Understand about recommended dietary allowances (RDA) for Indians with respect to age group and physiological status
3.	Gain knowledge about various therapeutic diets
4.	Learn about formulation of traditional Indian foods
5.	Understand the concept of functional food, nutraceuticals and learn the concept of space food, defence food, sports food

Units	Topics	Lectures
Unit 1	Nutrients and their function, food classification and their nutritive value, anti-nutritional factors present in food	04
Unit 2	Concept of different food groups, recommended dietary allowances (RDA) for Indians	03
Unit 3	nutrition for infant, pre-school & school children, adult, pregnant and lactating women, old age people	05
Unit 4	Production and formulation of Indian traditional sweet and snack food products, steps for quality improvement and value addition	05

Unit 5	Therapeutic diets – Principles & objectives of diet therapy, diet for patient suffering from Diabetes mellitus, osteoporosis, cardiac problem, gastrointestinal disorder, Diet planning and use of exchange list in nutrient calculation	06
Unit 6	Functional foods - definition and concepts; design of functional foods; Nutraceuticals food - definition and concepts, design of nutraceutical foods	04
Unit 7	Recent trends in food formulation; antioxidant rich food products; concepts for formulation of foods for drought and disaster afflicted; defence services, sportsmen, space food	05

S. No.	Title of Experiment
1	To study the principles and planning menu
2	Value added product from Aonla
3	Quality analysis and cost evaluation of processed product from Aonla
4	Process development of nutria-rich food for pregnant and lactating women
5	Preparation of soya milk and drying of its by product (Okara)
6	Preparation of fermented milk product blended with soya milk
7	Preparation of ready to serve (RTS) instant soup mix using soya products (okara
	powder)
8	Preparation of sugar free Indian Traditional Sweet (kajukatli)
9	Preparation of functional food (cookies) using chiaseeds
10	Preparation of whey beverage
11	Preparation Indian Traditional Snack (khakhra) fortified with flax seed and green
	leafy vegetables
12	Production of unripe mango beverage
13	Formulation and preparation of Probiotic/ synbiotic fermented dairy products
14	Preparation of ready-to-serve (RTS) instant halwa powder from unmarketable
	potatoes powder
15	Qualitative analysis of given oil sample (Oxidative Rancidity)
16	Visit to Food Processing Industries/ Khadhya Khurak – Food Processing Expo

Suggested Reading

C Gopalan, BV Ramshastri, S C Balasubramaniam, 1989, Nutritive Value of Indian Foods National Institute of Nutrition, Hyderabad

M Swaminathan, 1974, Essentials of Nutrition, Ganesh Co.

K.H. Steinkrauss, 1995, Handbook of Indigenous Fermented Foods, Marcel Dekker.

J Pokorny, N Yanishlieva, and M Gordon, 2001, Antioxidants in Food, Published by Woodhead Publishing Limited, Abington Hall, Abington

N N Potter, and J H Hotchkiss, 1995, Food Science, (5th Edition), Aspen Publishers, Inc., Gaithersburg, Maryland.

Food and Nutrition Bulletin, Vol. 23, 24, 25 and 26. The United Nations University, Press.

G Mazza, 1998, Functional Foods. Biochemical and Processing Aspects, Technomic Publ. Co.

Corrine Robinson, 1975, **Basic Nutrition and Diet Therapy**, Macmillan. F.P. Antia, 1974, Clinical Dietetics and Nutrition, **Oxford Medicine Publications** Davidson and Passmore, 1986, Human Nutrition and Dietetics, Churchill Livingstone

	Course Outcomes: On completion of course students will be able to		
CO1:	CO1: Understanding the concept of designing and formulation of menu		
CO2:	Understanding the RDA of Indians and meal planning according to age group and physiological status		
CO3:	Recognize the importance various therapeutic diets		
CO4:	Understanding the formulation of traditional Indian sweets and snacks foods and study steps of their quality improvements		
CO5:	Understand the concept of functional food and nutraceuticals and special need foods like space food, defence food, sports food		

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1							
CO2							
CO3							
CO4							
CO5							

5. Processing Technology of Fruits and Vegetables (FPT 352) 3 (2+1)

(32 Lectures + 16 Practicals)

(52 Lectures + 101 racticals)			
Obje	Objectives:		
1.	Understand methods of preservation of fruits and vegetables		
2.	Get knowledge of FSSAI specifications of fruits and vegetables products		
3.	To understand canning		
4.	To understand preparation of fruits and vegetable products		
5.	Get knowledge about fruits and vegetable industry byproducts utilization		

Units	Topics	Lectures
Unit 1	Production and processing scenario of fruits and vegetables in India and	02
	world; Scope of fruit and vegetable processing industry in India	
	Overview of principles and preservation methods of fruits and vegetables;	02
	Supply chain of fresh fruits and vegetables	
Unit 2	Primary processing and pack house handling of fruits and vegetables;	03
	Peeling, slicing, cubing, cutting and other size reduction operations for	
	fruits and vegetables	

Unit 3	Minimal processing of fruits and vegetables; Blanching- operations and equipment	02
Unit 4	Canning:- Definition, processing steps, and equipment; Cans and containers, quality assurance and defects in canned products;	03 02
Unit 5	FSSAI specifications and preparation and preservation of juices, squashes, syrups, sherbets, nectars, cordials, etc.; Processing and equipment for above products;	02 03
Unit 6	FSSAI specifications of crystallized fruits and preserves, jam, jelly and marmalades, candies Preparation, preservation and machines for manufacture of above products	01 03
Unit 7	Preparation, preservation and machines for manufacture of chutney, pickles, sauce, puree, paste, ketchup; toffee, cheese, leather, dehydrated, wafers and papads, soup powders;	02
Unit 8	Production of pectin and vinegar Commercial processing technology of selected fruits and vegetables for production of various value added processed products	01 02
Unit 9	By-products of fruit and vegetable processing industry.	02

S. No.	Title of Experiment
1	Primary processing of selected fruits and vegetables
2.	Canning of Mango/Guava/ Papaya
2	Qualitative analysis of pectin
3	Determination of salt concentration in processed/ preserved product
4	Determination of sulphurdioxide content in processed/preserved product
5	Preparation of jam from selected fruits
6	Preparation of jelly from selected fruits
7	Preparation of fruit marmalade
8	Preparation of RTS/ nectar
9	Preparation of squash/ crush
10	Preparation of cordial
11	Preparation of anardana
12	Preparation of pickles
13	Dehydration of ginger, onion and garlic
14	Preparation of banana and potato wafers;
15	Preparation of vegetable sauces
16	Preparation of preserves
17	Preparation of banana and potato wafers
18	Preparation of candied fruit and glaced fruit
19	Visit to fruits and vegetables pack house/ canning plant/ vegetable dehydration plant.

Suggested Reading U.D. Chavan and J.V. Patil. 2013. Industrial Processing of Fruits and Vegetables. Astral International Pvt. Ltd., New Delhi.

S. Rajarathnam and R.S. Ramteke. 2011. Advances in Preservation and Processing Technologies of Fruits and Vegetables. New India Publishing Agency, New Delhi.

Y.H. Hui. 2006. Handbook of Fruits and Fruit Processing. Blackwell Publishing Ltd., Oxford, UK.

W.V. Cruess. 2004. Commercial Fruit and Vegetable Products. Agrobios India, Jodhpur.

Y. H. Hui, Sue Chazala, Dee M. Graham, K.D. Murrell and Wai-Kit Nip. 2004. Handbook of Vegetable Preservation and Processing. Marcel Dekker, Inc., NY, USA.

A.K. Thompson. 2003. Fruit and Vegetables: Harvest, Handling and Storage, 2nd Ed. Blackwell Publishing Ltd., Oxford, UK.

Amalendu Chakraverty, Arun S. Mujumdar, G.S. Vijaya Raghavan and Hosahalli S. Ramaswamy. 2003. Handbook of Post Harvest Technology: Cereals, Fruits, Vegetables, Tea, and Spices. Marcel Dekker, Inc., NY, USA.

R.P. Srivastava and Sanjeev Kumar. 2002. Fruit & Vegetable Preservation: Principles and Practices, 3rd Ed. International Book Distribution Co., Delhi.

P.H. Pandey. 1997. Post Harvest Technology of Fruits and Vegetables. Saroj Prakashan, Allahabad.

Mircea Enachescu Dauthy. 1995. Fruit and Vegetable Processing. FAO Agricultural Services Bulletin No.119. FAO of UN, Rome.

Girdhari Lal, G.S. Siddappa and G.L. Tandon. 1959. Preservation of Fruits and Vegetables. ICAR, New Delhi.

EIRI Board of Consultants and Engineers. Manufacture of Snacks, Namkeen, Papads and Potato Products. EIRI, New Delhi.

Course Outcomes:

On com	On completion of course students will be able to		
CO1:	Apply basic principles of fruits and vegetable processing in food product development		
CO2:	Skill to develop various fruits and vegetable processed products		
CO3:	Skill to operate the equipment related to canning and other processing		
CO4:	Knowledge and skill to manufacture dehydrated fruits and vegetable products		
CO5:	Skill to conduct quality analysis of various fruits and vegetable products		

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

6. Bakery, Confectionery and Snack Products (FPT 353)

(32 Lectures + 16 Practicals)

	(52 Lectures + 16 Practicals)
Obj	ectives:
1.	To understand the basic principles of baking technology
2.	To get familiarize with equipment's for baking
3.	To understand the importance of ingredients in baking, confectionery and snack products.
4.	To get familiarize with manufacturing of different bakery products, chocolate type confectionery and extruded snack products.
5.	To learn the formulations, processing equipment's for breakfast cereals, macroni and malt.
6.	To understand the packaging and quality testing of bakery, confectionery, breakfast cereals, macroni and malt products.

Units	Topics	Lectures
Unit 1	Bakery products- Types (bread, biscuit cake), specifications, compositions and ingredients (flour, sugar, fat, shortening, leavening agent etc.) Formulations, processing (mixing, fermentation, rounding, proofing, sheeting, moulding, baking, depanning etc.), equipment, packaging, storage and quality testing of bakery products	03 03
Unit 2	Confectionery and chocolate products: Types, specifications, compositions, ingredients, formulations Processing, equipment, packaging, storage and quality testing of confectionery and chocolate products	02 02
Unit 3	Product quality characteristics Defects, causes and corrective measures	02 02
Unit 4	Extrusion technology and applications in food processing; Snack foods: Types, specifications, compositions, ingredients, Formulations, processing, equipment, packaging, storage and quality testing Snack food seasonings	02 02 02 01
Unit 5	Breakfast cereals, macaroni products and malts: Specifications, compositions, ingredients Formulations, processing, equipment for breakfast cereals, macaroni and malts Packaging, storage and quality testing for breakfast cereals, macaroni and malts.	03 03 03

List of Practicals

S. No.	Title of Experiment	
1	Identifications and composition of various ingredients for snacks, bakery and	
	confectionery products	
2	Flours, their classifications and characterization	

3	Determination of flour gluten
4	Determination of water absorption characteristics and dough development time
5	Determination of dough rising capacity
6	Determination of calcium carbonate in fortified atta
7	Preparation of selected snack items
8	Quality evaluation of selected snack items
9	Preparation of selected bakery items
10	Sensory and textural quality evaluation of selected bakery items
11	Preparation of selected confectionery items
12	Sensory and textural quality evaluation of selected confectionery items
13	Preparation of selected chocolates
14	Packaging and quality evaluation of selected chocolates
15	Preparation of selected extruded products
16	Packaging and quality evaluation of extruded products
17	Preparation of traditional Indian confection
18	Visit to bakery, confectionary and snack units (industry)

Suggested Reading

NIIR Board of Consultants & Engineers. 2014. The Complete Technology Book on Bakery Products (Baking Science with Formulation & Production), 3rd Ed. NIIR, New Delhi.

Peter P. Grewling. 2013. Chocolates & Confections, 2nd Ed. John Wiley & Sons, Inc., Hoboken, New Jersey, USA.

E.J. Pyler and L.A. Gorton. 2009. Baking Science & Technology, Vol. II: Formulation & Production, 4th Ed. Sosland Publishing Company, Kansas City, MO, USA.

E.J. Pyler and L.A. Gorton. 2008. Baking Science & Technology, Vol. I: Fundamentals & Ingredients, 4th Ed. Sosland Publishing Company, Kansas City, MO, USA.

Y.H. Hui. 2007. Handbook of Food Products Manufacturing: Principles, Bakery, Beverages, Cereals, Cheese, Confectionary, Fats, Fruits, and Functional Foods. John Wiley & Sons, Inc., Hoboken, New Jersey, USA.

John J. Kingslee. 2006. A Professional Text to Bakery and Confectionery. New Age International, New Delhi.

Harold Corke, Ingrid De Leyn, Nanna A. Cross, Wai-Kit Nip, Y.H. Hui. 2006. Bakery Products: Science and Technology. Blackwell Publishing Ltd., Oxford, UK.

Joseph Amendola and Nicole Rees. 2003. Understanding Baking: The Art and Science of Baking, 3rd Ed. John Wiley & Sons, Inc., Hoboken, New Jersey, USA.

Duncan Manley. 2000. Technology of Biscuits, Crackers and Cookies, 3rd Ed. Woodhead Publishing Limited, Cambridge, England.

N.L. Kent and A.D. Evers. 1994. Kent's Technology of Cereals: An Introduction for Students of Food Science and Agriculture, 4th Ed. Elsevier Science Ltd., Oxford, UK.

E.B. Jackson. 1995. Sugar Confectionery Manufacture, 2nd Ed. Springer-Verlag, US.

B.W. Minife. 1989. Chocolate, Cocoa, and Confectinery – Science and Technology, 3rd Ed. Chapman and Hall, Inc., New York, USA.

Samuel A. Matz. 1976. Snack Food Technology, 2nd Ed. AVI Publishing Co., Inc., Westport, Connecticut, USA.

US Wheat Associates. Baker's Handbook on Practical Baking.

	Course Outcomes: On completion of course students will be able to		
CO1:	Expose to the basic principles of baking confectionery extrusion technology for product		
CO2:	Demonstrate the different bakery, confectionery, extruded, chocolate, breakfast cereals product process making.		
CO3:	Expose to the principles and operate the equipment's in bakery, confectionery, extrusion, chocolate, breakfast cereals and snacks making industry.		
CO4:	Finding the quality of ingredients and its impact on bread, cake, chocolate, snacks, extruded and breakfast cereals making.		
CO5:	Prepare confectionery and malt products and evaluate its quality characteristics.		

	PSO1	PSO2	PSO3	PSO4
C01				
CO2				
CO3				
CO4				
CO5				

7. ICT Applications in Food Industry (FBM 351)

3 (1+2)

(16 Lectures + 32 Practical)

Obj	Objectives:		
1.	To understand applications of computation and information systems used in various food industries.		
2.	To provide students an understanding of the expectations of industry.		
3.	To provide an opportunity to students to develop inter-disciplinary skills for better employability.		
	To provide a working introduction to the MATLAB technical computing environment for algorithm development, data visualization, data analysis, and numerical computation.		
5.	To impart the Knowledge to the students with MATLAB programs and be able to apply them to solve engineering problems.		

Units	Topics	Lectures
Unit 1	Importance of computerization in food industry, operating environments and information systems for various types of food industries	1
	Introduction to Supervisory control and data acquisition (SCADA)	1
Unit 2	SCADA systems hardware, firmware, software and protocols, landlines, local area network systems, modems.	1

r		
Unit 3	Spreadsheet applications: Data interpretation and solving problems, preparation of charts, use of macros to solve engineering problems.	1
Cint 5	Use of add-ins, use of solver	1
Unit 4	Web hosting and webpage design; file transfer protocol (FTP),	1
	Online food process control from centralized server system in processing plant	1
	Use of MATLAB in food industry; computing with MATLAB, script files and editor/debugger, MATLAB help system.Problem solving methodologies, numeric, cell, arrays, matrix operations	1
	User defined functions, programming using MATLAB; debugging MATLAB programs,	1
Unit 5	Applications to simulations; Plotting and model building in MATLAB, X- Y plotting functions, subplots and overlay plots, special plot types, interactive plotting in MATLAB	1
	Function discovery, regression, the basic fitting interface, three dimensional plots	1
	Introduction to Toolboxes useful to Food Industry Curve fitting toolbox, Fuzzy logic toolbox, Neural Network toolbox, Image processing toolbox, statistical toolbox	1
	Introduction to computational fluid dynamics (CFD), governing equations of fluid dynamics; Models of flow, substantial derivative, divergence of velocity, continuity, momentum and energy equations; Physical boundary conditions, discretization; Applications of CFD in food and beverage industry;	1
	Introduction to CFD softwares, GAMBIT and Fluent softwares	1
Unit 6	LabVIEW – LabVIEW environment: Getting data into computer, data acquisition devices, NI-DAQ, simulated data acquisition, sound card, front panel/block diagram, toolbar/tools palette; Components of a LabVIEW application: Creating a VI, data Flow execution, debugging techniques, additional help, context help, tips for working in LabVIEW;	1
	LabVIEW typical programs: Loops, while loop, for loop, functions and sub Vis, types of functions, searching the functions palette, creating custom sub Vis, decision making and file I/O, case structure, select (if statement), file I/O; LabVIEW results: Displaying data on front panel, controls and indicators, graphs and charts, arrays, loop timing, signal processing, textual math, math script.	1

S. No.	Title of Experiment
1	Introduction to various features in spreadsheet
2	Solving problems using functions in spreadsheets
3	To use Add-Ins in spread sheet

4	statistical data analysis using Analysis Tool pack
	To solve problems on regression analysis using Analysis Tool pack in
5	spreadsheet
6	To solve problems on optimization using solver package in spreadsheet
7	Introduction to MATLAB
8	Writing code using MATLAB programming, Variables and Array
9	Using Two dimensional Plots and subplots
10	Using Three dimensional Plots and surface functions
11	Writing scripts file Using MATLAB
12	Creating User defined functions in MATLAB
13	Use of Relational and Logical Operators with decision statements
14	For loop and While loops in MATLAB
15	To solve problems using Curve fitting toolbox in MATLAB
16	To solve problems using Curve fitting toolbox in MATLAB
17	To solve problems using Fuzzy logic toolbox in MATLAB
18	To solve problems using Fuzzy logic toolbox in MATLAB
19	To solve problems using Neural Network toolbox in MATLAB
20	To solve problems using Neural Network toolbox in MATLAB
21	To solve problems using Image processing toolbox in MATLAB
22	To solve problems using Image processing toolbox in MATLAB
23	Introduction to GAMBIT software
24	Creation of Geometry for laminar flow through pipe using GAMBIT
25	Introduction to FLUENT software, Import of geometry and application of
	boundary conditions
26	Solution of problems on laminar flow using FLUENT
27	Introduction to LabVIEW, LabVIEW typical programs
28	LabVIEW: while loop, for loop, functions and sub Vis, types of functions,
20	searching the functions palette, creating custom sub Vis, decision making and file I/O, case structure, select (if statement), file I/O;
29	LabVIEW results: Displaying data on front panel, controls and indicators.
30	LabVIEW results: graphs and charts, arrays, loop timing
31	LabVIEW: signal processing, textual math, math script.
32	Introduction to NI-DAQ.

R. Paul Singh. 2014. Computer Applications in Food Technology: Use of Spreadsheets in Graphical, Statistical and Process Analysis. Academic Press, London.

William J. Palm III. 2011. Introduction to MATLAB for Engineers, 3rd Ed. McGraw-Hill Companies, Inc., NY, USA.

Da-Wen Sun. 2007. Computational Fluid Dynamics in Food Processing. CRC Press, Boca Raton, FL, USA.

Nigel Chapman and Jenny Chapman. 2006. Web Design: A Complete Introduction. John Wiley & Sons, USA.

National Instruments Corporation. 2005. Introduction to LabVIEW: 3-Hour Hands-On. NI, Austin, Texas.

David Bailey and Edwin Wright. 2003. Practical SCADA for Industry. Elsevier, Burlington, MA

Course Outcomes:

On completion of course students will be able to

On completion of course students will be use to	
	Students learned about ICT features get familiarised to automate the food industry
	processes.
GOA	Understand the basic concepts MATLAB Programing and familiarised with different
CO2:	Understand the basic concepts MATLAB Programing and familiarised with different MATLAB tools.
CO3:	Develop MATLAB Scripts and functions to solve engineering problems.
CO4.	Students learned graphic features of MATLAB and they are able to use this feature
04:	Students learned graphic features of MATLAB and they are able to use this feature effectively in the various applications.

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				

8. Marketing Management & International Trade (FBM 352) 2 (2+0)

(16 Lectures)

Obj	Objectives:		
	To enhance knowledge about marketing theories, principles, strategies and concepts and how they are applied;		
2.	To provide opportunities to analyse marketing activities within the firm;		
3.	To apply marketing concepts and theories to realistic marketing situations.		
4.	To provide knowledge about international market		

Units	Topics	Lectures
	Concept of marketing, functions of marketing	1
Unit 1	Concepts of marketing management, scope of marketing management	1
	Marketing management process	1

	Concepts of marketing- mix, elements of marketing- mix.	1
I	Concept of market structure	1
Unit 2	Marketing environment -Micro and macro environments	1
	Consumers buying behaviour, consumerism	1
Unit 3	Marketing opportunities analysis: marketing research and marketing information systems.	2
	Market measurement- present and future demand, market forecasting	1
Unit 4	Market segmentation, targeting and positioning	1
	Allocation and marketing resources	1
	Marketing planning process	1
Linit F	Product policy and planning : product-mix, product line, product life cycle	2
Unit 5	New product development process	1
	Product brand, packaging, services decisions	1
	Marketing channel decisions. Retailing, wholesaling and distribution.	1
	Pricing decisions	1
Unit 6	Price determination and pricing policy of milk products in organized and unorganized sectors of dairy industry.	1
	Promotion-mix decisions.	1
	Advertising, how advertising works, deciding advertising objectives	1
	Advertising budget	1
Unit 7	Advertising message, media planning, personal selling, publicity, sales promotion	1
	World consumption of food: Patterns and types of food consumption across the globe	1
	International marketing and international trade, salient features of international marketing	1
Unit 8	Composition & direction of Indian exports, international marketing environment	1
	Deciding which & how to enter international market	1
	Exports- direct exports, indirect exports, Licensing, Joint ventures, Direct investment	1
Un:40	Export trends and prospects of food products in India	1
Unit 9	Government institutions related to international food trade:APEDA, Tea Board, Spice Board, MOFPI, etc.	1
	WTO and world trade agreements related to food business	1

Philip Kotler, Kevin Lane Keller, Abraham Koshy, Mithileshwar Jha. 2013. Marketing Management: A South Asian Perspective, 14th Ed. Pearson Education.

Willium J. Stanton. 1984. Fundamentals of Marketing. Tata McGraw-Hill Publication, New Delhi.

C.N. Sontakki. Marketing Management. Kalyani Publishers, New Delhi.

John Daniels, Lee Radebaugh, Brigham, Daniel Sullivan. International Business, 15th Ed., Pearson Education.

Aswathappa. International Business. Tata McGraw-Hill Education, New Delhi. Fransis Cherunilam. International Business: Text and Cases, 5th Ed. PHI Learning, New Delhi.

	Course Outcomes: On completion of course students will be able to		
CO1 :	Students will be able to develop a suitable marketing mix of a company.		
	Students will be able to apply the three steps of target marketing: market segmentation, target marketing, and market positioning.		
CO3 :	For various stages in the life cycle of the product the students will be able to recommend a suitable pricing strategy.		
	options and their suitability for the company's product.		
CO5 :	Students will be able to develop a suitable promotion mix (advertising, sales promotion, public relations, personal selling, and direct marketing etc.) for the product.		

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

SEMESTER VI

1. Food Additives and Preservatives (FQA 361)

(32 Lectures + + 16 Practicals)

(32 Lectures + + 10 Practicals)	
Objectives:	
1	To help in understanding the basics of food additives
2	To familiarize with safety assessment of food additives
3	To gain knowledge on different types of food additives and their functional role

Unit	Topics	Lecture
Unit 1	Intentional and unintentional food additives, their toxicology and safety	2
	evaluation;	2
	Naturally occurring food additives;	1
	Food colors and dyes: Regulatory aspects of dyes,	1
Unit 2	food color (natural and artificial),	1
	pigments and their importance and utilization as food color;	1
	Processing of natural and artificial food colorants;	1
	Food preservatives and their chemical action.	1
	Role and mode of action of salts,	1
Unit 3	chelating agents, stabilizers and thickeners;	1
Unit 5	Humectants/polyhydric alcohol, anti-caking agent, firming agent,	1
	flour bleaching and maturing agents, antioxidants, nutritional and non-	1
	nutritional sweeteners;	1
	Production of enzymes, leavening agents,	1
Unit 4	fat substitutes,	1
	flavor and taste enhancers in food processing;	1
	Acidity regulators; Emulsifiers.	1

List of Practicals

S. No.	Title of Experiment	
1	Evaluation of GRAS aspect of food additives;	
2	Estimation of chemical preservatives by TLC (organic and inorganic);	
3	Estimation of chemical preservatives by TLC (organic and inorganic);	
4	Estimation of chemical preservatives by TLC (organic and inorganic);	
5	Identification of food colour by TLC (organic and inorganic);	
6	Identification of food colour by TLC (organic and inorganic);	
7	Quantitative estimation of added dyes;	
8	Quantitative estimation of added dyes;	
9	Isolation and identification of naturally occurring food pigments by paper and TLC;	

2(1+1)

10	Role and mode of action of chelating agent in fruit juice;
11	Role and mode of action of stabilizer and thickener in frozen dairy products (ice-
11	cream);
12	Role and mode of clarifying agent in fruit juices;
13	Role and mode of antioxidant in foods;
14	Role and mode of antioxidant in foods;
15	Role of leaving agent in baked food product;
16	Preservation of food samples using humectants.

H.-D. Belitz, W. Grosch and P. Schieberle. 2009. Food Chemistry. 4th Edition. Springer-Verlag, Berlin,Heidelberg.

S.N. Mahindru. 2008. Food Additives: Characteristics, Detection and Estimation. Aph Publishing Corporation, New Delhi.

S.S. Deshpande. 2002. Handbook of Food Toxicology. Marcel and Dekker AG, Basel, Switzerland.

Course Outcomes: On completion of course students will be able to	
CO1. Acquaint the knowledge about intentional & unintentional food additives	
CO2. Utilize food additives for new product development	

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				

2. Food Quality, Safety Standards and Certification (FQA 362) 2 (2+0)

(32 Lectures + + 16 Practicals)

Obje	Objectives:		
1.	Understand quality and safety of food and its assessment		
2.	2. Learn different food laws		
3.	3. Understand quality and food safety management system		

Unit Topics Lecture

	Introduction :Definition, its role in food industry, Quality attributes	
	Physical properties: Color, visocisity, size and shape:	1
Unit-1	Definition, color measurement techniques by spectrophotometer, Muncell	2
	color system and Lovibond tintometer; Role of viscosity and consistency	
	in food quality :Size and Shape :Size and shape, weight, volume, weight	2
	volume ratio, length, width, diameter, symmetry, curvature, area;	
	Quality Defects : Classification, Genetic-physiological defects:	
	Structural, off color, character; Entomological defects: Holes, scars,	
Unit-2	lesions, off coloring, curled aves, pathological defects; Mechanical	3
	defects, extraneous or foreign material defects. Measurement of defects	
	by different techniques	
	Quality Assessment:	
	Quality assessment of food materials on the basis of sensory evaluation,	
	Physical, chemical microbiological methods ;	2
11.4 2	Quality of products during processing and after processing:	2
Unit -3	Factors influencing the food qualities: Soil, field practices, harvesting	1
	practices, procedures, packaging, transportation, storage, conditions,	1
	processing conditions, packaging and storage conditions of finished	2
	products.	
	Role of QC and QA Quality: Quality Control, Quality Assurance,	
	Concepts of quality control and quality assurance functions in food	2
	industries.	2
Unit-4	Quality Improvement Total Quality management : Quality evolution,	
	quality gurus, defining TQM, principals of TQM, stages in	2
	implementation, TQM road map. Quality improvement tools, customer	3
	focus, cost of quality	
	Food Laws	
	Food Laws and Standards: National and International food laws	^
	Mandatory and voluntary food laws.	2
Unit -5	FSSAI	
	Indian Food Regulations and Certifications: Food Safety and Standards	
	Act FSSAI Rules, food adulteration, misbranding, common adulterants in	2
	foods, Duties and responsibilities of Food Safety Authorities	2
	AGMARK, BIS, FPO, Weights and Measures Act ,CODEX :	
	Agricultural Marketing and Grading Standards (AGMARK), Bureau of	-
	Indian Standards(BIS) and their certification,	2
Unit -6	FPO –standards and certification process Weights and Measures Act and	
5	Packaged commodity rules	2
	Role of CODEX in food safety and standards ,Food safety issues and risk	
	analysis	2
		l

	FSMS 22000	
	Food Safety Management Systems ,ISO 22000 - 2005 and other Global	
Unit-7	Food safety management systems.	3
	Principles, implementation; documentation, types of records; Auditing,	
	certification procedures, certifying bodies, accrediting bodies	

Inteaz Alli. 2004. Food Quality Assurance: Principles and Practices. CRC Press, Boca Raton, FL, USA.

Ronald H. Schmidt and Gary E. Rodrick. 2003. Food Safety Handbook. John Wiley & Sons, Inc., Hoboken. New Jersey, USA.

R.E. Hester and R.M. Harrison. 2001. Food Safety and Food Quality. Royal Society of Chemistry, Cambridge, UK

	Course Outcomes: On completion of course students will be able to	
CO1:	CO1: Understanding of food safety and food quality and their assessment	
CO2 :	Learning of various quality management systems	
CO3 :	Understanding mandatory and voluntary food laws, standards and certification	
CO4 :	CO4: Understanding global food regulatory affairs	
CO5 :	Learning about food safety management systems	

	PSO1	PSO2	PSO3	PSO4
C01				
CO2				
CO3				
CO4				
CO5				

3. Instrumentation and Process Control in Food Industry (FPE 361) 3 (2+1) (32 Lectures + 16 Practical)

Obje	Objectives:		
1.	Interpret techniques to measure the industrial Process Control parameters.		
	Develop assembly language programs for microprocessors/microcontrollers to achieve desired objective		
3.	Evaluate computer based automation system used in industries ranging from discrete, continuous process to hybrid processes.		
4.	To formulate PLC programs.		
5.	Utilize software tools in industrial instrumentation		

Units	Topics	Lecture	
Units 1	Introduction, definitions, characteristics of instruments, static and dynamic characteristics		
Units 2	Temperature and temperature scales; Various types of thermometers; thermocouples, resistance thermometers and pyrometers	3	
Units 3	Pressure and pressure scales, manometers, pressure elements differential pressure	3	
Units 4	Liquid level measurement, different methods of liquid level measurement, flow measurement, differential pressure meters, variable area meters	3	
Units 5	Weight measurement: Mechanical scale, electronic tank scale, conveyor scale	3	
Units 6	Transmission: Pneumatic and electrical, Control elements: control actions, pneumatic and electrical control systems	3	
Units 7	Process control: Definition, simple system analysis, dynamic behavior of simple process, Laplace transform, process control hardware	3	
Units 8	Frequency response analysis, characteristics, Bode diagram and Nyquist plots and stability analysis	3	
Units 9	Controllers and indicators: Temperature control, electronic controllers, timers and indicators, discrete controllers, adaptive and intelligent controllers	3	
Units 10	Computer-based monitoring and control: Importance, hardware features of data acquisition and control computer, signal interfacing, examples in food processing	3	
Units 11	Introduction of 8051/8085 based system and applications in processing	3	
		32	

S.No.	Title of Experiment		
1	Study on instrumentation symbols;		
2	Study of P&I diagram and flow sheet diagrams in instrumentation.		
3	Study of characteristics of Pressure transducers		
4	Real-time study of Pressure transducers characteristics with PC		
5	Study of Pressure Control by s On/Off Controller		
6	Study of characteristics of IC temperature sensor		
7	Study of characteristics of Thermocouple.		
8	Study of characteristics of Platinum RTD		
9	Study of Temperature controlled alarm system		
10	Study of Data logger		
11	Study of 8051 based programming examples.		
12	Study of Programmable Logic Controllers (PLC) Hardware		

13	Study of Programmable Logic Controllers (PLC) Ladder programming,
14	To study PLC based control of Multiprocess system
15	Study of various transducers for measurement of pressure ,temperature, flow, combinely
16	Visit to food processing plant and dairy industry.

Don W. Green and Robert H. Perry. 2008. Perry's Chemical Engineers' Handbook. McGraw-Hill Co., Inc., NY, USA.

Bela G. Liptak. 2003. Instrument Engineer's Handbook, Vol. I and II, 4th Ed. CRC Press, Boca Raton, FL, USA.

Curtis D. Johnson. 2003. Process Control Instrumentation Technology, 7th Ed. Prentice Hall of India Pvt. Ltd., New Delhi.

D.V.S. Murty. 2004. Transducers and Instrumentation. Prentice Hall of India Pvt. Ltd. New Delhi.

	Course Outcomes: On completion of course students will be able to			
CO1.	Recognize different sensors, transducers and various measuring Process Parameters			
CO2.	Understanding the constructional and operational aspects of various sensors, transducers and measuring instruments used for industrial and Food applications			
CO3.	Acquire proficiency in automation and Instrumentation systems as well as programming, simulation and computing.			
CO4.	Utilize software tools in industrial instrumentation in Food Industry.			
CO5.	To Develop algorithm to achieve desired objective using software.			

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

4. Applications of Renewable Energy in Food Processing (FPE 362) 2 (1+1)

(32 Lectures + + 16 Practical)

Obj	Objectives:		
1.	To study the energy sources and their utilization in food processing		
2.	To know about solar energy and applications of solar thermal energy in food processing		
3.	To learn about solar photovoltaic system and its applications		

4.	To study biomass, its characterization and applications of bio energy in food industry
	To learn importance of biogas technology and uses of food waste for biogas generation and its application
6.	To briefly understand wind energy, hydroelectric energy and ocean energy

Units	Topics	Lectures
Units 1	Introduction to energy sources; classification of renewable energy sources, utilization of these sources in food processing sector.	2
Units 2	Solar radiation, measurement of solar radiation, types of solar collectors and their uses; familiarization with solar energy gadgets: solar cooker, solar concentrator, solar dryer, solar steam generator; utilization of solar thermal energy in food processing.	4
Units 3	Solar photovoltaic cells, modules, arrays, conversion process of solar energy into electricity, applications in food industry.	2
Units 4	Biomass and its characterization; briquetting of biomass. Biomass combustion, pyrolysis, gasification and uses of gasifiers in food industry and biodiesel preparation.	3
Units 5	Importance of biogas technology, production mechanism, types of biogas plants, uses of biogas, handling & utilization of digested slurry. Use of food waste for biogas generation and its applications.	3
Units 6	Brief introduction to wind energy, hydroelectric energy, ocean energy	2
	Total	16

S.No.	Title of Experiment
1	Study of solar radiation measuring instruments.
2	Study of solar cooker.
3	Study of solar water heater.
4	Study of solar dryer.
5	Study of solar PV system.
6	Estimation of calorific value of biomass.
7	Estimation of moisture content of biomass.
8	Estimation of ash content of biomass.
9	Estimation of fixed carbon and volatile matter of biomass.
10	Study of briquetting machine.
11	Demonstration of up draft gasifier.
12	Demonstration of down draft gasifier.

13	Demonstration of working of a fixed dome type biogas plants.
14	Demonstration of working of a floating drum type biogas plants.
15	Demonstration of biodiesel preparation.
16	Demonstration of wind measuring instruments.

Rai, G.D. 2013. Non-Conventional Energy Sources, Khanna Publishers, Delhi.

Rai, G.D., Solar Energy Utilization, Khanna Publishers, Delhi.

Khandelwal, K.C. & S. S. Mahdi. 1990. Biogas Technology- A Practical Handbook.

Rathore N. S., Kurchania A. K., Panwar N. L. 2007. Non-Conventional Energy Sources, Himanshu Publications.

Tiwari, G.N. and Ghoshal, M.K. 2005. Renewable Energy Resources: Basic Principles and Applications. Narosa Pub. House. Delhi.

Rathore N. S., Kurchania A. K., Panwar N. L. 2007. Renewable Energy, Theory and Practice, Himanshu Publications.

	Course Outcomes: On completion of course students will be able to			
CO1:	Expose to the energy sources, renewable energy and its utilization in food processing			
CO2:	Applications of solar thermal and photovoltaic systems in food processing			
CO3:	Expose to various types of biomass and its applications as energy source in food processing			
CO4:	Familiarization with biogas generation from food waste and its utilization in food processing plants			
CO5 :	Understand with wind energy, hydro electric energy and ocean energy			

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1							
CO2							
CO3							
CO4							
CO5							

5. Processing of Meat, Fish and Poultry Products (FPT 361) 3 (2+1)

(32 Lectures + 16 Practicals)

Obje	ectives:
1.	To study the status and sources and importance of meat, poultry and fish
2.	To study about structure and pre and post slaughter operation of meat, poultry and fish
3.	To study the different methods of preservation and processing of meat, poultry and fish

4.	To study the processing techniques and manufacturing of value added products made from meat, poultry and fish
5.	To study different quality test used and safety standards used in meat and poultry industry
6.	To study the by-products of meat, poultry, fish and eggs and their utilization

Units	Topics	Lectures
Unit 1	Status of meat poultry and fish industry in India; Sources and importance of meat, poultry and fish.	02
Unit 2	Structure and composition of muscle, types, classification and composition of fish Pre-slaughter operations and slaughtering operations for animals and poultry.	01 02
Unit 3	Dressing and evaluation of animal carcasses; Factors affecting post- mortem changes, properties and shelf life of meat; Mechanical deboning, grading and aging; Eating and cooking quality of meat.	02 02
Unit 4	Preservation of meat, poultry and fish by chilling, freezing, pickling, curing, cooking and smoking, canning, dehydration, radiation, chemical and biological preservatives. Novel methods: Low dose irradiation; High pressure treatment, hurdle	02 01
Unit 4	barrier concept for- meat, poultry and fish Meat tenderization; Meat emulsions; Fish protein concentrates (FPC), fish protein extracts (FPE), fish protein hydrolysates (FPH);	01 02
	Meat cutting and handling; Preparation, preservation and equipment for manufacture of smoked meat and its quality evaluation Preparation, packaging and equipment for manufacture of dehydrated	02 02
Unit 5	meat products and their quality evaluation; Preparation, preservation and equipment for manufacture of meat sausages and their quality evaluation; Surimi process, traditional and modern surimi production lines, quality of surimi products, comparison of surimi and fish mince products	03
	Problems on mass balancing of ingredients in formulation of value added meat products; Abattoir design and layout;	01 01
Unit 6	Eggs: Structure, composition, quality characteristics, processing, preservation of eggs Processing and preservation of poultry meat and chicken patties,	02 03
	Preparation protocols of indigenous products: Fish sauce and paste By-products of meat, poultry, fish and eggs and their utilization;	02
Unit 7	Safety standards in meat/ fish industry: HACCP/ISO/MFPO/FSSAI/ Kosher/Halal, EU hygienic regulations and ISO 9000 standards.	02

S.No.	Title of Experiment
1	Pre-slaughter operations of meat animals and poultry birds
2.	Slaughtering and dressing of meat animals
3	Study the anatomy of poultry
4	Study of different primal meat cuts/ dressing of fish
5	Cutting and handling of meat/fish
6	Preservation of meat/fish by freezing
7	Preservation of meat/ fish by curing and pickling
8	Preservation of meat/ fish by dehydration
9	Evaluation of quality and grading of raw and boiled eggs
10	Preservation of egg by thermo stabilization
11	Preparation of value added poultry/meat/ egg
12	Evaluation of meat quality by determination of ERV and WHC
13	Evaluation of meat quality by determination of pH and dye reduction test
14	Estimation of TVB and TMA
15	Protein estimation by Folin-Lowrey's method
16	Determination of iodine value
17	Canning of meat/ egg/poultry/ fish products
18	Visit to abattoir

Vikas Nanda. 2014. Meat, Egg and Poultry Science & Technology. I.K. International Publishing House Pvt. Ltd., New Delhi.

B.D. Sharma and Kinshuki Sharma. 2011. Outlines of Meat Science and Technology. Jaypee Brothers Medical Publishers Pvt. Ltd., New Delhi.

Fidel Toldrá, Y. H. Hui, Iciar Astiasarán, Wai-Kit Nip, Joseph G. Sebranek, Expedito-Tadeu F. Silveira, Louise H. Stahnke, Régine Talon. 2007. Handbook of Fermented Meat and Poultry. Blackwell Publishing Professional, Ames, Iowa, USA.

Joseph Kerry, John Kerry and David Ledward. 2005. Meat Processing-Improving Quality. Woodhead Publishing Ltd., Cambridge, England.

NIIR Board of Consultants & Engineers. 2005. Preservation of Meat and Poultry. Asia Pacific Business Press, Inc., Delhi.

Howard J. Swatland. 2004. Meat Cuts and Muscle Foods, 2nd Ed. Nottingham Univ. Press, Nottingham.

B.D. Sharma. 2003. Modern Abattoir Practices and Animal Byproducts Technology. Jaypee Brothers Medical Publishers Pvt. Ltd., New Delhi.

B.D. Sharma. 1999. Meat and Meat Products Technology Including Poultry Products Technology. Jaypee Brothers Medical Publishers Pvt. Ltd, New Delhi.

Alan H. Varnam and Jane P. Sutherland. 1995. Meat and Meat Products: Technology, Chemistry and Microbiology. Chapman & Hall, London.

William J. Stadelman and Owen J. Cotterill. 1995. Egg Science and Technology, 4th Ed. Food Products Press, NY, USA.

R.A. Lawrie. 1985. Meat Science, 4th Ed. Pergamon Press, Oxford, UK.

D.P. Sen. 2005. Advances in Fish Processing Technology. Allied Publishers Pvt. Ltd., Delhi.

Brigitte Maas-van Berkel, Brigiet van den Boogaard and Corlien Heijnen. 2004. Preservation of Fish and Meat. Agromisa Foundation, Wageningen.

FAO. 2003. Code of Practices of Canned Fishery products. FAO, UN, Rome.

Brend W. Rautenstrauss and Thomas Liehr. 2002. Fish Technology. Springer-Verlag, US.

G.M. Hall. 1997. Fish Processing Technology, 2nd Ed. Chapman & Hall, London, UK.

C.O. Chichester and H.D. Graham. 1973. Microbial safety of Fishery products. Academic Press, New York.

American Public Health Association. 1970. Recommended Procedures for the Bacteriological examination of Seawater and shell fish. APHA, USA.

George Borstorm. 1961. Fish as Food - Vol. I, II, III and IV. Academic Press, New York.

K. Gopakumar. Textbook of Fish Processing Technology. ICAR, New Delhi.

Charles L. Cutting. Processing and Preservation of Fish. Agro Bios, New Delhi.

Course	Course Outcomes:		
	pletion of course students will be able to		
CO1:	Expose to the Abattoir design and layout and different pre and post slaughter techniques used for animals for production of meat		
CO2:	Knowledge different meat handling techniques, preservation and processing methods, processing into value added from meat, fish and poultry products.		
CO3:	Expose to various quality determining test used for meat, fish and poultry products		
CO4:	Familiarization with various safety standards in meat/ fish industry		
CO5:	Familiarization with various by-products utilization from egg, meat, fish		

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1							
CO2							
CO3							
CO4							
CO5							

6. Processing Technology of Beverages (FPT 362)

3(2+1)

(32 Lectures + 16 Practicals)

Obje	Objectives:	
1.	Learn about different types of beverages	
2.	Gain knowledge about FSSAI specifications of beverages	
3.	To understand knowledge about the water and its quality for beverages	
4.	Understand ingredients, manufacturing and packaging processes for beverages	
5.	To understand carbonation and its relevance to beverages	

Units	Topics	Lectures
Unit 1	History and importance of beverages and status of beverage industry	02
Unit 2	Processing of beverages: Packaged drinking water, juice based beverages, synthetic beverages, still, carbonated	02
Unit 3	Low-calorie and dry beverages, isotonic and sports drinks Dairy based beverages Alcoholic beverages, fruit beverages, specialty beverages	02 02 02
Unit 4	Tea, coffee, cocoa, spices, plant extracts, etc.	02
Unit 5	FSSAI specifications for beverages	02
Unit 6	Ingredients, manufacturing and packaging processes and equipment for different beverages	03
Unit 7	Water treatment and quality of process water	03
Unit 8	Sweeteners, colorants, acidulants, Clouding and clarifying and flavouring agents for beverages	02 02
Unit 9	Carbon dioxide and carbonation	02
Unit 10	Quality tests and control in beverages	02
Unit 11	Miscellaneous beverages: Coconut water, sweet toddy Sugar cane juice, coconut milk, flavoured syrups.	02 02

S.No.	Title of Experiment
1	Quality analysis of raw water
2	Determination of brix value, pH and acidity of beverages
3	Determination of density and viscosity of caramel
4	Preparation of synthetic beverage
5	Determination of colours in soft drinks by wool technique
6	Preparation of iced and flavoured tea
7	Preparation of instant tea
8	Assessment of purity of carbon dioxide
9	Preparation of carbonated and non-carbonated beverages
10	Preparation of sports drink
11	Preparation of dairy/ fruit based beverage
12	Determination of caffeine in beverages
13	Quality analysis of tea and coffee
14	Preparation of miscellaneous beverages
15	Visit to carbonation unit
16	Visit to mineral water plant.

Suggested Reading

Hans Michael Eblinger. 2009. Handbook of Brewing: Processes, Technology, Markets. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Germany.

Y.H. Hui. 2007. Handbook of Food Products Manufacturing: Principles, Bakery, Beverages, Cereals, Cheese, Confectionary, Fats, Fruits, and Functional Foods. John Wiley & Sons, Inc., Hoboken, New Jersey, USA.

Philip R. Ashurst. 2005. Chemistry and Technology of Soft Drinks and Fruit Juices, 2nd Ed. Blackwell Publishing Ltd., Oxford, UK.

Amalendu Chakraverty, Arun S. Mujumdar, G.S. Vijaya Raghavan and Hosahalli S. Ramaswamy. 2003. Handbook of Post Harvest Technology: Cereals, Fruits, Vegetables, Tea, and Spices. Marcel Dekker, Inc., NY, USA.

V.K. Joshi and Ashok Pandey. 1999. Biotechnology: Food Fermentation - Microbiology, Biochemistry and Technology, Vol. II. Educational Publishers & Distributors, New Delhi. Alan H. Varnam and Jane P. Sutherland. 1994. Beverages: Technology, Chemistry and Microbiology. Chapman, London, UK.

Course Outcomes: On completion of course students will be able to		
CO1:	Apply basic principles of beverage processing	
CO2:	Able to develop various beverage products	
CO3:	Able to do various analysis to access quality of water	
CO4:	Able to perform quality tests for beverages	
CO5:	Able to develop carbonated beverage products	

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

7. Sensory Evaluation of Food Products (FPT 363) 3(2+1)

(32 Lectures + 16 Practicals)

Obje	Objectives:		
1.	To learn the principles and significance of the sensory perception mechanism		
2.	To learn principles of good practices for the sensory evaluation protocol		
	To learn the basic principles of four basic taste and physiology of sensory organs.		
4.	To gain knowledge on flavour and odour perception mechanism, factors that influence the sensory measurement and various sensory evaluation techniques		
5.	To correlate of sensory and instrumental analysis		
6.	To learn the importance of market analysis and consumer testing		

Units	Topics	Lectures
Unit 1	Definition and importance of sensory evaluation in relation to consumer acceptability and economic aspects; Factors affecting food acceptance; Terminology related to sensory evaluation;	03
Unit 2	Principles of good practice: the sensory testing environment, test protocol considerations,	02
Unit 3	Basic principles: Senses and sensory perception, physiology of sensory organs, classification of tastes and odours, threshold value factors affecting senses, visual, auditory, tactile and other responses.	03
Unit 4	Flavour: Definition and its role in food quality; Taste: Classification, taste qualities, relative intensity, reaction time, effect of disease, temperature, and taste medium on taste, basic tastes, interaction of tastes;	03
Unit 5	Odour: Definition, classification, neutral-mechanisms, olfactory abnormalities, odor testing, techniques, thresholds, odor intensities, olfaction; Visual, auditory, tactile and other senses, vision, audition, oral perception other than taste;	05
Unit 6	Factors influencing sensory measurements: Attitudinal factors, motivation psychological errors in judgment, relation between stimulus and perception adaptation;	03
Unit 7	Correlation of sensory and instrumental analysis; Requirements of sensory evaluation, sampling procedures; Factors influencing sensory measurements; Interrelationship between sensory properties of food products and various instrumental and physico-chemical tests	04
Unit 8	Quality Evaluations Application of sensory testing: sensory evaluation in food product development, sensory evaluation in quality control. Laboratory quality measurement: Types of tests, panel selection and testing environment, serving procedures, instruction to judges, difference tests, directional difference tests, classification of difference tests, two-sample tests, three-sample tests, multisampling tests, comparison of procedures, ranking, scoring, hedonic scaling, dilution procedures, descriptive sensory analysis, contour method, other procedures;	06
Unit 9	Consumer measurement: Factors influencing acceptance and preference, objectives of consumer preference studies, information obtained from consumer study, factors influencing results from consumer surveys, methods of approach, development of the questionnaire, types of questionnaires, serving procedures; Comparison of laboratory panels with consumer panels; Limitations of consumer survey.	03
	Total	32

S.No.	Title of Experiment
1	Determination of threshold value for basic tastes
2	Odour recognition

-	
3	Determination of threshold value for various odours
4	Perform preference tests: Paired Comparison
5	Perform discrimination tests: Duo-trio
6	Perform discrimination tests: Triangle
7	Perform discrimination tests: Ranking test
8	Selection of judging panel
9	Training of judges, for recognition of certain common flavour and texture defects
	using different types of sensory tests
10	Descriptive analysis methodology- Perform descriptive sensory test
11	Sensory evaluation of various food products using different scales, score cards etc.
12	Texture profile analysis of selected food product
13	Estimation of color of food product
14	Relationship between objective and subjective methods
15	Designing a sensory laboratory

Amerine, M.A., Pangborn, R.M. and Rossles, E.B. 1965. Principles of Sensory Evaluation of Food. Academic Press, London.

Early, R. 1995. Guide to Quality Management Systems for Food Industries. Blackie Academic. Jellinek, G. 1985. Sensory Evaluation of Food - Theory and Practice. Ellis Horwood.

Lawless, H.T. and Klein, B.P. 1991. Sensory Science Theory and Applications in Foods. Marcel Dekker.

Macrae, R., Rolonson Roles and Sadlu, M.J. 1994. Encyclopedia of Food Science & Technology & Nutrition. Vol. XI. Academic Press.

Maslowitz, H. 2000. Applied Sensory Analysis of Foods. Vols. I, II. CRC Press, Boca Raton, FL, USA.

Piggot, J.R. 1984. Sensory Evaluation of Foods. Elbview Applied Science Publ.

Potter, N.N. and Hotchleiss, J.H. 1997. Food Science, 5th Ed. CBS Publishers, Delhi.

Rai, S.C. and Bhatia, V.K. 1988. Sensory Evaluation of Agricultural Products. Indian Agricultural Statistics Research Institute (ICAR), New Delhi.

Stone, H. and Sidel, J.L. 1985. Sensory Evaluation Practices. Academic Press, London.

Harry, T. Lawless, Hildegarde Heymann. 2010. Sensory Evaluation of Food: Principles and Practices, 2nd Ed., Springer, New York or Dordrecht Heidelberg, London.

Course Outcomes: On completion of course students will be able to		
CO1:	CO1: Apply the principles and significance of the sensory perception mechanism	
CO2:	Demonstrate the flavour and odour perception mechanism.	
CO3:	Familiarisation with various factors that influence the sensory measurement	
CO4	CO4 Performance of the sensory evaluation of foods and instrument analysis	
CO5	CO5 Performance of consumer testing and understand the consumer needs	

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

8. Food Packaging Technology and Equipment (FPT 364)

3 (2+1)

(32 Lectures + 16 Practicals)

Objectives:

Obj	Objectives:	
1.	Understand concept of packaging, its type and properties of packaging materials	
2.	To gain knowledge on different food grade packaging materials.	
3.	To understand the functions of novel packaging system.	
4.	To develop suitable packaging system for different food matrix.	
5.	To understand the Regulatory aspects of packaging.	

Units	Topics	Lectures
Unit 1	Packaging situations in World and India; Need of packaging; Package requirements, package functions; Properties of different packaging materials	04
Unit 2	Package materials: Classification of packages, paper as package material, its manufacture, types, advantages of corrugated and paper board boxes, etc.;	04
Unit 3	Glass as package material, manufacture, advantages, disadvantages; Metal (Aluminium/ tin/ SS) as package material-manufacture, advantages, disadvantages,	03
Unit 4	Plastic as package material, classification of polymers, properties of each plastics, uses of each plastics; Lamination: Moulding-Injection, blow, extrusion; Coating on paper and films; Aseptic packaging: Need, advantages, process, comparison of conventional and aseptic packaging, system of aseptic packaging and materials used in aseptic packaging;	04
Unit 5	Permeability: Theoretical considerations, permeability of gases and vapours; Permeability of multilayer materials; Permeability in relation to packaging requirement of foods;	03
Unit 6	Intelligent/Smart/Active packaging systems and their food applications, CAP/MAP	03
Unit 7	Transport properties of barriers; Simulations of product: Package environment interaction; Packaging of specific foods, mechanical and functional tests on package. Packaging	04

Unit 8	Packaging Practices followed for fruits and vegetables and their products, Packaging machines (FFS), Filling machines, vacuum packaging machines	04
Unit 9	Labelling requirements, methods of coding and regulation and standards of labelling of food packages	03

S. No.	Title of Experiment
1	Classification of various packages based on material and rigidity
2	Measurement of thickness of packaging materials
3	Measurement of basic weight and grammage of paper and paperboards
4	Measurement of water absorption of paper and paper boards (Cobb Test)
5	Measurement of bursting strength of paper and paper boards
6	Measurement of tear resistance of papers
7	Measurement of puncture resistance of paper and paperboard
8	Drop test, Box compression test;
9	Determination of machine direction, cross direction, top side and wire side of packaging materials
10	Measurement of grease resistance of papers
11	Identification of plastic films
12	Measurement of tensile strength of packaging material
13	Measurement of dart impact resistance for plastic films
14	Determination of seal integrity, ink adhesion
15	Head space analysis of packaged food
16	Determination of lacquer integrity test
17	Determination of gas and water transmission rate of package films
18	Study of vacuum packaging machine, bottle filling machine and form-fill-seal machine
19	Shelf life calculations for food products

Suggested Reading

Gordon L. Robertson. 2014. Food Packaging: Principles and Practice, 3rd Ed. CRC Press, Boca Raton, FL, USA.

Gordon L. Robertson. 2010. Food Packaging and Shelf Life – A Practical Guide. CRC Press, Boca Raton, FL, USA.

Dong Sun Lee. 2008. Food Packaging Science & Technology. CRC Press, Boca Raton FL, USA. Jung H. Han. 2007. Packaging for Nonthermal Processing of Food. Blackwell Publishing Ltd., Oxford, UK.

Jung H. Han. 2005. Innovations in Food Packaging. Elsevier Science & Technology Books, UK. Rajia Ahvennainen. 2003. Novel Food Packaging Techniques. CRC-Woodhead Publishing Ltd., Cambridge, England.

Richard Coles, Berek McDowell and Mark J. Kirwan. 2003. Food Packaging Technology. Blackwell Publishing Ltd., Oxford, UK

Course Outcomes:

On completion of course students will be able to

CO1:	Demonstrate the packaging functions and evaluate its performance in food preservation.
CO2 :	Utilize the various food grade materials for packaging of food.
CO3 :	Comprehend the functions of advanced packaging methods.
CO4 :	Design the packaging system for different food matrix
CO5 :	Apply the packaging and labelling regulations while designing the packaging system.

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

9. Entrepreneurship Development (FBM 361)

2 (1+1)

(32 Lectures + + 16 Practical)

	Objectives:	
1	To explain concepts of entrepreneurship and build understanding about different business situation and act of entrepreneur	
1.	situation and act of entrepreneur	
2.	To develop entrepreneurial abilities	
3.	Provide knowledge and skills to become entrepreneur	
4.	Understanding the stages of the entrepreneurial process	
5.	Developing the ability to analyse various aspects of entrepreneurship	

Units	Topics	Lectures
	Entrepreneurship: Importance and growth, characteristics and qualities of entrepreneur	1
	Role of entrepreneurship, ethics and social responsibilities	1
Unit 1	Entrepreneurship development: Assessing overall business environment in the Indian economy	1
	Overview of Indian social, political and economic systems and their implications for decision making by individual entrepreneurs	1
	Globalization and the emerging business/entrepreneurial environment	1
	Concept of entrepreneurship	1
	Entrepreneurial and managerial characteristics, managing an enterprise	1
Unit 2	Motivation and entrepreneurship development, importance of planning, monitoring, evaluation and follow up, managing competition, entrepreneurship development programs	1
	SWOT analysis	1
	Generation, incubation and commercialization of ideas and innovations	1
Unit 3	Women entrepreneurship: Role and importance, problems	1

	Planning and evaluation of projects: Growth of firm, project identification and selection, factors inducing growth	1
	Project feasibility study: Post planning of project, project planning and control; New venture management; Creativity	1
	Government schemes and incentives for promotion of entrepreneurship; Government policy on small and medium enterprises (SMEs)/SSIs	1
Unit 4	Export and import policies relevant to food processing sector; Venture capital; Contract farming and joint ventures, public-private partnerships	1
	Overview of food industry inputs; Characteristics of Indian food processing industries and export	1

S. No.	Title of Experiment	
1-2	Data collection from market on various projects on food processing and analysis	
3-4	Visit to public enterprise (agro-processing/food business centers)	
5-6	SWOT analysis of public enterprises	
7-8	Visit to private enterprise (agro-processing/food business centers)	
9-10	SWOT analysis of private enterprise	
11-12	Calculation of project cost and break even analysis for a specific food product enterprise	
13-14	Project proposals as entrepreneur – individual and group	
15-16	Presentation of project proposals in the class	

Suggested Reading

C.B. Gupta and N.P. Srinivasan. 2012. Entrepreneurship Development. S. Chand & Sons, New Delhi.

Anil Kumar, S., Poornima, S.C., Mini, K., Abraham and Jayashree, K. 2003. Entrepreneurship Development.New Age International Publishers, New Delhi.

Gupta, C.B. 2001. Management: Theory and Practice.Sultan Chand & Sons, New Delhi.

Vasant Desai. 2000. Dynamics of Entrepreneurial Development and Management. Himalaya Publishing House New Delhi.

Course C	Course Outcomes:	
On compl	letion of course students will be able to	
CO1:	Students will have knowledge about foundation of entrepreneurship and its theories.	
CO2 :	Students will be able to enhance their entrepreneurial skills	
CO3 :	Learner will understand steps involved in starting new venture	
CO4 :	Students will be able to explore marketing methods and new trends in entrepreneurship	
CO5 :	Enhance employability	

	PSO1	PSO2	PSO3	PSO4
C01				
CO2				
CO3				
CO4				
CO5				

SEMESTER VII

1. Communication and Soft Skills Development (FBM 471)

2 (1+1)

(It Lectures + It Fluctual)	
Objectives:	
1	To enable students to develop soft skills
2	To enable students to learn the tactics of day to day conversation and Group Discussions
•	To enhance the confidence levels of students by engaging them in Role-plays, Debates and Group Discussions.

(16 Lectures + 16 Practical)

Units	Topics	Lectures
	Communication Skills: Meaning and process of communication	1
Unit 1	Technical Communication and General Communication	1
	Verbal and non-verbal communication	1
	Comprehending an article	2
Unit 2	Oral presentation skills	2
Unit 2	Technical writing skills, bibliographic procedures	2
	E-mailing & blogging : writing & etiquettes	1
Unit 3	Individual and group presentations	1
Unit 5	Impromptu presentation, public speaking	1
	Goal setting; Decision making; Career Planning	1
Unit 4	Tools for job application: Resume, interviews, group discussion	2
	Organizing seminars and conferences	1

List of Practicals

S. No.	Title of Experiment
1-2	Activities for Self development: Etiquette and manners; Break the ice berg – FEAR
3	Activity for development of time management skills
4-5	Leadership & Team building activity
6	Listening, reading, summarizing and abstracting of general/technical articles
7	Extempore
8-9	Public speaking
10-11	Presentation using PowerPoint
12-13	Resume building
14	Group discussions
15-16	Interviewing skills

Suggested Reading

Mamatha Bhatnagar and Nitin Bhatnagar. 2011. Effective Communication and Soft Skills. Person Education.

Meenakshi Raman, Sangeeta Sharma. Technical Communication Principles and Practice

Harold Wallace and Ann Masters. Personality Development. Cengage Publishers.

Andrea J. Rutherford. Basic Communication

Course Outcomes: On completion of course students will be able to	
CO1 to earn Socio-linguistic competence and discourse competence	
CO2	The students can improve their interpersonal and employability skills
CO3	to develop "thinking" skill in English
CO4	become successful in all the challenges apart from technical aspects

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				

2. Project Preparation and Management (FBM 472)

2 (1+1)

(16 Lectures + 16 Practical)

Ob	Objectives:	
1.	To understand the basic concept of project preparation and management	
2.	To understand the formulation of project	
3.	To understand time management in the project	
4.	To understand reviewing system of project	

Units	Topics	
	What is project and project Management, Evolution of project management, Forms and environment of project management	1
Unit 1	Project life cycle	1
	Project Identification, Screening, Project Appraisal, Project Selection, Project Proposal & Project Scope	2
	Project Planning	1
Unit 2	Work break down structure and Network Scheduling	1
Unit 2	Critical Path Method	1
	Program Evaluation & Review Technique	1
Unit 3	Time-cost relationship in project	1
	Resource Considerations in Projects, Resource Profiles and levelling, limited Resource Allocation	1

	Project Implementation, Monitoring and Control: Project management Process and role of project manager, team building, Leadership in Projects, Organizational and behavioural issues in Project Management	2
	Project Monitoring and Control	1
	Project Completion and Review	1
Unit 4	Project Management - Recent trends and Future Directions	1
	Computers in Project Management	1

S. No.	Title of Experiment
1-2	Brainstorming exercise to identify a set of projects and their evaluation
3-4	Writing work break down structure for different projects
5-6	Network Scheduling and Drawing network charts for different projects
7-8	Formulation of CPM scheduling for a specific project
9-10	Formulation of PERT scheduling for a specific project
11-12	Reduction of Project Duration: Time/cost trade off
13-14	Resource Profiles and levelling
15-16	PERT/Cost Method, Earned value analysis

Suggested Reading

R. Panneerselvam. 2004. Operations Research, 2nd Ed. International Book House, Mumbai. Prasanna Chandra. Projects. Tata McGraw-Hill Publication, New Delhi.

John M. Nicholas. Project Management for Business and Technology – Principles and Practices. Pearson Prentice Hall.

Harold Kerzner. Project Management – A System Approach to Planning, Scheduling, and Controlling. CBS Publishers & Distributors.

Prasanna Chandra. Projects – Planning, Analysis, Selection, Financing, Implementation, and Review. Tata McGraw-Hill Publishing Company Ltd.

P. Gopalakrishnan and V.E. Rama Moorthy. Textbook of Project Management. Macmillan

Course Outcomes:

On completion of course students will be able to

1	
CO1:	Understanding of project management its concept, classification and project life cycle.
CO2 :	Understanding of project identification, its formulation and importance of project
CO3 :	Understanding for formulation of project report
CO4 :	Understanding of project time duration, completion and reviewing system
CO5 :	Present and future technology for preparation of project

	PSO1	PSO2	PSO3	PSO4
C01				
CO2				
CO3				
CO4				
CO5				

3. Student READY- Experiential Learning Programme-I (FPO 471) AVR

Objectives:

- **1.** To gain knowledge through meaningful hands on experience
- 2. To enhance confidence in student's ability to design and execute project work
- 3. To do survey of existing product and customer demand
- **4.** To promote professional and analytical skills
- 5. To develop entrepreneurial skills and management capabilities

Orientation and Developing a Business Plan/ Project proposal

Identification of the product to be manufactured, Market Survey, Analysis of the existing status of the identified product and targeted market and customer, Innovativeness and Creativity, Preparation of the project proposal with supply chain of inputs, personnel plan, production plan, finance plan etc. and its preparation

Plan for the Production

Organization of resources, Organizing Utility, Sequential grouping of activities, Packaging and storage, Product pricing physical inputs, man hours, depreciation etc.

Production

Regularity in production, Adhering to production plan, Product quality assessment, Maintenance of production records, Team work

Sales

Sales strategy, sales strategy, sales volumes, assessment of sales performance, profit generated including C/B ratio, payback period, etc.

Documentation and Report Presentation and Evaluation

	Course Outcomes: On completion of course students will be able to				
CO1:	Hands on experience through production of various food products, raw material handling, analysis, packing and marketing				
CO2:	Understanding the designing and preparation of production plan				
	Knowledge of the existing status of the identified product and targeted market and customer				
CO4 :	Development of professional and analytical skills by handling pilot scale food processing				
CO5 :	understanding the concept of documentation and report preparation				

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

and

7(0+7)

4. Student READY- Experiential Learning Programme-II (FPO 472)

Objectives:

- 1. To gain knowledge through meaningful hands on experience
- 2. To enhance confidence in student's ability to design and execute project work
- **3.** To do survey of existing product and customer demand
- **4.** To promote professional and analytical skills
- **5.** To develop entrepreneurial skills and management capabilities

Orientation and Developing a Business Plan/ Project proposal

Identification of the product to be manufactured, Market Survey, Analysis of the existing status of the identified product and targeted market and customer, Innovativeness and Creativity, Preparation of the project proposal with supply chain of inputs, personnel plan, production plan, finance plan etc. and its preparation

Plan for the Production

Organization of resources, Organizing Utility, Sequential grouping of activities, Packaging and storage, Product pricing physical inputs, man hours, depreciation etc.

Production

Regularity in production, Adhering to production plan, Product quality assessment, Maintenance of production records, Team work

Sales

Sales strategy, sales strategy, sales volumes, assessment of sales performance, profit generated including C/B ratio, payback period, etc.

Documentation and Report Presentation and Evaluation

Course Outcomes:

On completion of course students will be able to

CO2: Understanding the designing and preparation of production plan

CO3: Knowledge of the existing status of the identified product and targeted market and customer

CO4: Development of professional and analytical skills by handling pilot scale food processing

CO5: understanding the concept of documentation and report preparation

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

EL provides the students an excellent opportunity to develop analytical and entrepreneurial skills, and knowledge through meaningful hands on experience, confidence in their ability to design and execute project work. The main objectives of EL are:

- To promote professional skills and knowledge through meaningful hands on experience.
- To build confidence and to work in project mode.
- To acquire enterprise management capabilities

The experiential learning programme will be offered for one semester period in the final year. As the programme is enterprise oriented, students and faculty are expected to attend the activities of the enterprise with total commitment, and without any time limit or restriction of working hours for ELP.

Student Rural and Entrepreneurship Awareness Development Yojana (READY) - Experiential Learning with a credit load of 0+14 credit hours through relevant pilot plants for processing of various commodities, preferably on campus. This shall include development of Detailed Project Report on setting up of enterprise in the selected areas of product manufacture and Evaluation of the Module. The experiential learning is intended to build practical skills and entrepreneurship attributes among the students with an aim to deal with work situations and for better employability and self-employment.

EL Activity		
Orientation and Developing a Business Plan/ Project proposal	02	
Identification of the product to be manufactured, Market Survey, Analysis of the		
existing status of the identified product and targeted market and customer,		
Innovativeness and Creativity, Preparation of the project proposal with supply chain		
of inputs, personnel plan, production plan, finance plan etc. and its preparation		
Plan for the Production	02	
Organization of resources, Organizing Utility, Sequential grouping of activities, Packaging and storage, Product pricing physical inputs, man hours, depreciation etc.		
Production	06	
Regularity in production, Adhering to production plan, Product quality assessment, Maintenance of production records, Team work		
Sales	03	
Sales strategy, sales strategy, sales volumes, assessment of sales performance, profit		
generated including C/B ratio, payback period, etc.		
Documentation and Report Presentation and Evaluation		
Total Credit	14	

5. Student READY - Research Project (FPO 473)

3 (0+3)

Objectives:

1. To understand concept of research and to learn concept for higher education

2.	To gain knowledge for preparation of project proposal
3.	To develop new product or new concept
4.	To execute research as per plan of work and data collection
5.	To analyse data, interpret the results and summarise the project

Research project is allotted to group of students by concerned project advisor

	Course Outcomes: On completion of course students will be able to				
CO1:	CO1: Understand the concept and the need of research				
CO2:	D2: Recognize the current need of research hand accordingly prepare project proposal				
CO3:	CO3: Understanding the systematic technology for new product development				
CO4:	CO4: Knowledge of project work and data collection and interpretation				
CO5:	Understanding the concept of summarize the project and can identify the scope of further research				

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

6. Student READY – Seminar (FPO 474)

1 (0+1)

Obje	Objectives:		
1.	To understand concept of seminar presentation		
2.	To enhance confidence and personality in students		
3.	To promote professional skills		
4.	To get knowledge through novel technique in the field of food processing		
5.	To study research work, articles and periodicals for seminar		

Seminar presentation on allotted topics related to food processing

	Course Outcomes:		
On comple	etion of course students will be able to		
CO1:	Understanding concept of seminar		
CO2:	: Development of confidence and personality in students		
CO3:	Enhancing the professional and entrepreneur skills		
CO4:	Understanding the concept of novel technique in the field of food processing		

CO5: Gaining in knowledge through review and research articles

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				

SEMESTER VIII

	1. Student READY - Industrial Tour (FPO 481)	2 (0+2)		
Objectives:				
1.	To visit food processing industries			
2.	To gain knowledge of food production at mass scale			
3.	Knowledge of food analysis at various stages and documentation			
4.	Understand food packaging and storage at industrial level			
5.	To visit educational institutes			

Exposure to different food industries as well as renowned institutes related to food processing

Course Outcomes:				
On completion of course students will be able to				
CO1:	1: Exposure of various food processing industries			
CO2:	Knowledge of standard protocol various food production at mass scale			
CO3:	Understanding the concept food analysis at various stages and documentation			
CO4:	Understanding the concept food packaging and storage at industrial level			
CO5:	Exposure of various educational institutes			

	PSO1	PSO2	PSO3	PSO4
C01				
CO2				
CO3				
CO4				
CO5				

2. St	rudent READY - Internship/In-Plant Training (FPO 482)20 (0+20)				
Obje	Objectives:				
1.	To handle various processing operations and other technical activities such as product processing, packaging, product development, quality control, projects, engineering and others of the food industry.				
2.	To get actual hands-on exposure and the actual product making process at large scale.				
3.	To study the principles working/operations of equipment's at industry scale.				
4.	To work on project assigned by industry personal, conduct experiments, collect, analyse, interpret data and project writing.				
5.	To work with industry professional staff members for overall personality development.				

SEMESTER VIII

Course Outcomes: On completion of course students will be able to				
CO1:	Expose to the industrial production food products			
CO2:	Familiarisation with various equipment's, methods and processing operations			
CO3:	Explore the packaging, product development, quality control and projects related activities at industry			
CO4:	Awareness about the current new technology and challenges on food processing area.			
CO5:	Assessing the interests and abilities in food processing field and explore career alternatives prior to graduation			

	PSO1	PSO2	PSO3	PSO4
CO1				
CO2				
CO3				
CO4				
CO5				